Abstract
Integrin alpha 4 beta 1 can mediate both cell-cell and cell-extracellular matrix adhesion by binding to either fibronectin or vascular cell adhesion molecule 1 (VCAM-1). Both interactions are important for extravasation of leukocytes from the blood implying that rationally designed inhibitors of alpha 4 beta 1 function may be useful for treating a various inflammatory conditions. The mechanisms of ligand binding by alpha 4 beta 1 are complicated by the fact that alternative splicing can generate different isoforms of the receptor-binding domains in both fibronectin and VCAM-1. Therefore, in addition to developing alpha 4 beta 1 antagonists, we have also been interested in identifying isoform-specific functions. Recombinant ligand variants have been tested in adhesion and direct receptor-binding assays and each molecule was found to have a different inherent affinity for alpha 4 beta 1 that endows them with different adhesive activities. This suggests that alternative splicing may regulate alpha 4 beta 1-dependent motility in vivo. The initial strategy that we have adopted to develop alpha 4 beta 1 inhibitors has been to identify key amino acid residues and peptide sequences participating in the receptor-ligand binding event and to use this information to generate synthetic mimetics. Three active sites have been identified in fibronectin by testing truncated proteins, expressing recombinant fragments and screening synthetic peptides. Two of these sites employ versions of a novel integrin-binding motif, LDVP/IDAP. A key active site in VCAM-1 has been identified by similar approaches as the related sequence IDSP. Since IDSP-like sequences are probably used by other integrin-binding immunoglobulins, derivatives of these peptides may turn out to be the forerunners of a new generation of therapeutic agents with multiple applications.
Original language | English |
---|---|
Pages (from-to) | 177-91; discussion 191-9 |
Journal | Ciba Foundation symposium |
Volume | 189 |
Publication status | Published - 1995 |
Keywords
- Amino Acid Sequence
- Animals
- Binding Sites
- Drug Design
- Fibronectins
- Humans
- Inflammation
- Integrin alpha4beta1
- Integrins
- Molecular Sequence Data
- Receptors, Lymphocyte Homing
- Sequence Homology, Amino Acid
- Vascular Cell Adhesion Molecule-1