Membrane potential and bicarbonate secretion in isolated interlobular ducts from guinea-pig pancreas

H. Ishiguro, M. C. Steward, Y. Sohma, T. Kubota, M. Kitagawa, T. Kondo, R. M. Case, T. Hayakawa, S. Naruse

    Research output: Contribution to journalArticlepeer-review


    The interlobular duct cells of the guinea-pig pancreas secrete HCO3- across their luminal membrane into a HCO3--rich (125 mM) luminal fluid against a sixfold concentration gradient. Since HCO3- transport cannot be achieved by luminal C1-/HCO3- exchange under these conditions, we have investigated the possibility that it is mediated by an anion conductance. To determine whether the electrochemical potential gradient across the luminal membrane would favor HCO3 efflux, we have measured the intracellular potential (Vm) in microperfused, interlobular duct segments under various physiological conditions. When the lumen was perfused with a 124 mM Cl--25 mM HCO3- solution, a condition similar to the basal state, the resting potential was approximately -60 mV. Stimulation with dbcAMP or secretin caused a transient hyperpolarization (∼5 mV) due to activation of electrogenic Na+-HCO3- cotransport at the basolateral membrane. This was followed by depolarization to a steady-state value of approximately -50 mV as a result of anion efflux across the luminal membrane. Raising the luminal HCO3- concentration to 125 mM caused a hyperpolarization (∼10 mV) in both stimulated and unstimulated ducts. These results can be explained by a model in which the depolarizing effect of C1- efflux across the luminal membrane is minimized by the depletion of intracellular C1- and offset by the hyperpolarizing effects of Na+-HCO3- cotransport at the basolateral membrane. The net effect is a luminally directed electrochemical potential gradient for HCO3- that is sustained during maximal stimulation. Our calculations indicate that the electrodiffusive efflux of HCO3- to the lumen via CFTR, driven by this gradient, would be sufficient to fully account for the observed secretory flux of HCO3-.
    Original languageEnglish
    Pages (from-to)617-628
    Number of pages11
    JournalJournal of General Physiology
    Issue number5
    Publication statusPublished - 1 Nov 2002


    • Bicarbonate ion
    • Cystic fibrosis transmembrane conductance regulator
    • Membrane potentials
    • Pancreatic ducts
    • Sodium-bicarbonate cotransporter


    Dive into the research topics of 'Membrane potential and bicarbonate secretion in isolated interlobular ducts from guinea-pig pancreas'. Together they form a unique fingerprint.

    Cite this