TY - JOUR
T1 - Memory CD8+ T cells exhibit tissue imprinting and nonstable exposure-dependent reactivation characteristics following blood-stage Plasmodium berghei ANKA infections
AU - Shaw, Tovah
AU - Haley, Michael
AU - Dookie, Rebecca
AU - Godfrey, Jenna J.
AU - Cheeseman, Antonn
AU - Strangward, Patrick
AU - Zeef, Leo
AU - Villegas-Mendez, Ana
AU - Couper, Kevin
PY - 2021/8/13
Y1 - 2021/8/13
N2 - Experimental cerebral malaria (ECM) is a severe complication of Plasmodium berghei ANKA (PbA) infection in mice, characterised by CD8+ T cell accumulation within the brain. Whilst the dynamics of CD8+ T cell activation and migration during extant primary PbA infection have been extensively researched, the fate of the parasite-specific CD8+ T cells upon resolution of ECM are not understood. In this study we show that memory OT-I cells persist systemically within the spleen, lung and brain following recovery from ECM after primary PbA-OVA infection. Whereas memory OT-I cells within the spleen and lung exhibited canonical central memory (Tcm) and effector memory (Tem) phenotypes, respectively, memory OT-I cells within the brain post-PbA-OVA infection displayed an enriched CD69+CD103- profile and expressed low levels of T-bet. OT-I cells within the brain were excluded from short-term intravascular antibody labelling but were targeted effectively by longer-term systemically administered antibodies. Thus, the memory OT-I cells were extravascular within the brain post- ECM but were potentially not resident memory cells. Importantly, whilst memory OT-I cells exhibited strong reactivation during secondary PbA-OVA infection, preventing activation of new primary effector T cells, they had dampened reactivation during a fourth PbA-OVA infection. Overall, our results demonstrate that memory CD8+ T cells are systemically distributed but exhibit a unique phenotype within the brain post-ECM, and that their reactivation characteristics are shaped by infection history. Our results raise important questions regarding the role of distinct memory CD8+ T cell populations within the brain and other tissues during repeat Plasmodium infections.
AB - Experimental cerebral malaria (ECM) is a severe complication of Plasmodium berghei ANKA (PbA) infection in mice, characterised by CD8+ T cell accumulation within the brain. Whilst the dynamics of CD8+ T cell activation and migration during extant primary PbA infection have been extensively researched, the fate of the parasite-specific CD8+ T cells upon resolution of ECM are not understood. In this study we show that memory OT-I cells persist systemically within the spleen, lung and brain following recovery from ECM after primary PbA-OVA infection. Whereas memory OT-I cells within the spleen and lung exhibited canonical central memory (Tcm) and effector memory (Tem) phenotypes, respectively, memory OT-I cells within the brain post-PbA-OVA infection displayed an enriched CD69+CD103- profile and expressed low levels of T-bet. OT-I cells within the brain were excluded from short-term intravascular antibody labelling but were targeted effectively by longer-term systemically administered antibodies. Thus, the memory OT-I cells were extravascular within the brain post- ECM but were potentially not resident memory cells. Importantly, whilst memory OT-I cells exhibited strong reactivation during secondary PbA-OVA infection, preventing activation of new primary effector T cells, they had dampened reactivation during a fourth PbA-OVA infection. Overall, our results demonstrate that memory CD8+ T cells are systemically distributed but exhibit a unique phenotype within the brain post-ECM, and that their reactivation characteristics are shaped by infection history. Our results raise important questions regarding the role of distinct memory CD8+ T cell populations within the brain and other tissues during repeat Plasmodium infections.
M3 - Article
SN - 0019-2805
JO - Immunology
JF - Immunology
ER -