Model Identification of a Small Fully-Actuated Aquatic Surface Vehicle Using a Long Short-Term Memory Neural Network

Marin Dimitrov, Keir Groves, David Howard, Barry Lennox

Research output: Contribution to conferencePaperpeer-review

203 Downloads (Pure)


A long short-term memory neural network is used to provide a system model that captures the temporal-dynamics of a holonomic, fully-actuated aquatic surface vehicle. As is true in many fields, new developments in robotics often are made in simulation first before being applied to real systems. To simulate an aquatic or aerial robot, a dynamic system model of the robot is required. The more representative the dynamic model is of the real robot, the smaller the simulation-to-reality gap becomes. The performance of the neural network is compared against a classical parametric model, where coefficients of the parametric model were identified using the same data that was used to train the neural network. The results show that the neural network consistently outperforms the classical parametric model and significantly reduces the error between real velocities and estimated velocities. The neural network also demonstrated the ability to capture complex hydrodynamic effects that were not captured in the parametric model. In addition to the performance improvements, the neural network method can be easily adapted to similarly actuated aquatic vehicles by simply retraining, whereas the classical approach would require manual selection of new equation terms. The neural network model that was created has been used in a vehicle simulation and is presently being used as a research tool.
Original languageEnglish
Number of pages7
Publication statusPublished - Jun 2021
EventIEEE ICRA 2021 - Xi'an, China
Duration: 31 May 20214 Jun 2021


ConferenceIEEE ICRA 2021
Internet address


Dive into the research topics of 'Model Identification of a Small Fully-Actuated Aquatic Surface Vehicle Using a Long Short-Term Memory Neural Network'. Together they form a unique fingerprint.

Cite this