TY - JOUR
T1 - Modeling Data Journeys to Inform the Digital Transformation of Kidney Transplant Services
T2 - Observational Study
AU - Sharma, Videha
AU - Eleftheriou, Iliada
AU - van der Veer, Sabine N.
AU - Brass, Andrew
AU - Augustine, Titus
AU - Ainsworth, John
N1 - Publisher Copyright:
© Videha Sharma, Iliada Eleftheriou, Sabine N van der Veer, Andrew Brass, Titus Augustine, John Ainsworth.
PY - 2022/4/21
Y1 - 2022/4/21
N2 - Background: Data journey modeling is a methodology used to establish a high-level overview of information technology (IT) infrastructure in health care systems. It allows a better understanding of sociotechnical barriers and thus informs meaningful digital transformation. Kidney transplantation is a complex clinical service involving multiple specialists and providers. The referral pathway for a transplant requires the centralization of patient data across multiple IT solutions and health care organizations. At present, there is a poor understanding of the role of IT in this process, specifically regarding the management of patient data, clinical communication, and workflow support. Objective: To apply data journey modeling to better understand interoperability, data access, and workflow requirements of a regional multicenter kidney transplant service. Methods: An incremental methodology was used to develop the data journey model. This included review of service documents, domain expert interviews, and iterative modeling sessions. Results were analyzed based on the LOAD (landscape, organizations, actors, and data) framework to provide a meaningful assessment of current data management challenges and inform ways for IT to overcome these challenges. Results: Results were presented as a diagram of the organizations (n=4), IT systems (n>9), actors (n>4), and data journeys (n=0) involved in the transplant referral pathway. The diagram revealed that all movement of data was dependent on actor interaction with IT systems and manual transcription of data into Microsoft Word (Microsoft, Inc) documents. Each actor had between 2 and 5 interactions with IT systems to capture all relevant data, a process that was reported to be time consuming and error prone. There was no interoperability within or across organizations, which led to delays as clinical teams manually transferred data, such as medical history and test results, via post or email. Conclusions: Overall, data journey modeling demonstrated that human actors, rather than IT systems, formed the central focus of data movement. The IT landscape did not complement this workflow and exerted a significant administrative burden on clinical teams. Based on this study, future solutions must consider regional interoperability and specialty-specific views of data to support multi-organizational clinical services such as transplantation.
AB - Background: Data journey modeling is a methodology used to establish a high-level overview of information technology (IT) infrastructure in health care systems. It allows a better understanding of sociotechnical barriers and thus informs meaningful digital transformation. Kidney transplantation is a complex clinical service involving multiple specialists and providers. The referral pathway for a transplant requires the centralization of patient data across multiple IT solutions and health care organizations. At present, there is a poor understanding of the role of IT in this process, specifically regarding the management of patient data, clinical communication, and workflow support. Objective: To apply data journey modeling to better understand interoperability, data access, and workflow requirements of a regional multicenter kidney transplant service. Methods: An incremental methodology was used to develop the data journey model. This included review of service documents, domain expert interviews, and iterative modeling sessions. Results were analyzed based on the LOAD (landscape, organizations, actors, and data) framework to provide a meaningful assessment of current data management challenges and inform ways for IT to overcome these challenges. Results: Results were presented as a diagram of the organizations (n=4), IT systems (n>9), actors (n>4), and data journeys (n=0) involved in the transplant referral pathway. The diagram revealed that all movement of data was dependent on actor interaction with IT systems and manual transcription of data into Microsoft Word (Microsoft, Inc) documents. Each actor had between 2 and 5 interactions with IT systems to capture all relevant data, a process that was reported to be time consuming and error prone. There was no interoperability within or across organizations, which led to delays as clinical teams manually transferred data, such as medical history and test results, via post or email. Conclusions: Overall, data journey modeling demonstrated that human actors, rather than IT systems, formed the central focus of data movement. The IT landscape did not complement this workflow and exerted a significant administrative burden on clinical teams. Based on this study, future solutions must consider regional interoperability and specialty-specific views of data to support multi-organizational clinical services such as transplantation.
KW - Communication
KW - Delivery of Health Care
KW - Humans
KW - Kidney Transplantation
KW - Workflow
UR - http://www.scopus.com/inward/record.url?scp=85129673231&partnerID=8YFLogxK
U2 - 10.2196/31825
DO - 10.2196/31825
M3 - Article
C2 - 35451983
AN - SCOPUS:85129673231
SN - 1439-4456
VL - 24
SP - e31825
JO - JOURNAL OF MEDICAL INTERNET RESEARCH
JF - JOURNAL OF MEDICAL INTERNET RESEARCH
IS - 4
M1 - e31825
ER -