Abstract
Pyranose ring pucker is a key coordinate governing the structure, interactions and reactivity of carbohydrates. We assess the ability of the machine learning potentials, ANI-1ccx and ANI-2x, and the GFN2-xTB semiempirical quantum chemical method, to model ring pucker conformers of five monosaccharides and oxane in the gas phase. Relative to coupled-cluster quantum mechanical calculations, we find that ANI-1ccx most accurately reproduces the ring pucker energy landscape for these molecules, with a correlation coefficient r2 of 0.83. This correlation in relative energies lowers to values of 0.70 for ANI-2x and 0.60 for GFN2-xTB. The ANI-1ccx also provides the most accurate estimate of the energetics of the 4C1-to-1C4 minimum energy pathway for the six molecules. All three models reproduce chair more accurately than non-chair geometries. Analysis of small model molecules suggests that the ANI-1ccx model favors puckers with equatorial hydrogen bonding substituents; that ANI-2x and GFN2-xTB models overstabilize conformers with axially oriented groups; and that the endo-anomeric effect is overestimated by the machine learning models and underestimated via the GFN2-xTB method. While the pucker conformers considered in this study correspond to a gas phase environment, the accuracy and computational efficiency of the ANI-1ccx approach in modeling ring pucker in vacuo provides a promising basis for future evaluation and application to condensed phase environments.
Original language | English |
---|---|
Journal | Journal of Computational Chemistry |
Early online date | 27 Sept 2022 |
DOIs | |
Publication status | E-pub ahead of print - 27 Sept 2022 |