Abstract
Mixing in the hyporheic zone plays a key role in controlling the fate and transport of contaminants in streams and rivers. Consistently with recent experimental and numerical results, a physically based one‐dimensional solute transport model is presented that represents hyporheic mixing as a diffusion process exponentially attenuated with depth. When vertical diffusion in the sediment bed is not limited by an impermeable boundary, the moments of the BTCs generated by the model exhibit persistent non‐Fickian behavior and are shown to scale consistently with existing experimental evidence. The ability of the exponentially attenuated mixing model (EAMM) to represent experimental BTCs was tested using data from field and flume tracer experiments, and its performance was compared with that of a classic two‐storage zone model (TSZM). While both models provided an equally good approximation for the BTCs observed in field tracer tests, the EAMM provided better fits for the flume experiments. Analysis of the model equations and their solutions shows that, if the flow cross‐sectional area and wetted perimeter are not predetermined, there are infinite sets of parameter values that produce the same space‐time concentration distributions. The result implies that the physical parameters of hyporheic exchange cannot be determined by sole measurements of the solute BTCs in the surface water unless flow cross‐sectional area and average flow depth can be independently estimated.
Original language | English |
---|---|
Journal | Water Resources Research |
Early online date | 18 Nov 2019 |
DOIs | |
Publication status | Published - 2019 |
Keywords
- Hyporheic mixing
- Longitudinal dispersion
- Equifinality
- Transient storage
- Anomalous transport
- Exponentially Attenuated Mixing