TY - JOUR
T1 - Moderate intensity exercise in hypoxia increases IGF-1 bioavailability and serum irisin in individuals with type 1 diabetes
AU - Zebrowska, Aleksandra
AU - Sikora, Marcin
AU - Konarska, Anna
AU - Zwierzchowska, Anna
AU - Kaminski, Tomasz
AU - Robins, Anna
AU - Hall, Barbara
PY - 2020/5/27
Y1 - 2020/5/27
N2 - Aim:This study aimed to determine the effect of moderate intensity continuous exercise (Ex) and hypoxia (Hyp) on serum brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1) and its binding protein-3 (IGFBP-3), irisin and cytokines levels in patients with type 1 diabetes (T1D).Methods:A total of 14 individuals with T1D (age: 28.7 ± 7.3 years) and 14 healthy adults (age: 27.1 ± 3.9 years) performed 40-min continuous Ex at moderate intensity (50% lactate threshold) on a cycle ergometer in normoxia (Nor) and Hyp (FiO2 = 15.1%) Biochemical factors, glucose concentrations and physiological variables were measured at rest, immediately and up to 24 h after both Ex protocols.Results:Patients with T1D had significantly lower pre-Ex serum concentrations of BDNF (p < 0.05, p < 0.01), and total IGF-1 (p < 0.001, p < 0.05) and significantly higher irisin levels (p < 0.05, p < 0.01) in Nor and Hyp, compared with healthy subjects. Ex significantly increased in T1D group serum BDNF (in Nor only p < 0.05) and total IGF-1 levels in Nor and Hyp (p < 0.001 and p < 0.01, respectively). Immediately after Ex in Hyp, freeIGF-1 (p < 0.05) and irisin levels (p < 0.001) were significantly higher compared with the levels induced by Ex alone. Free IGF-1 and irisin serum levels remained elevated in 24 h post-Ex in Hyp. In T1D, significant blood glucose (BG) decrease was observed immediately after Ex in Hyp (p < 0.001) and in 24 h recovery (p < 0.001) compared with pre-Ex level.Conclusion:The study results suggest that moderate intensity continuous Ex has beneficial effect on BDNF and IGF-1 levels. Ex in hypoxic conditions may be more effective in increasing availability of IGF-1. The alterations in the post-Ex irisin levels and IGF-1 system may be contributing to more effective glycaemia control in patients with T1D.
AB - Aim:This study aimed to determine the effect of moderate intensity continuous exercise (Ex) and hypoxia (Hyp) on serum brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1) and its binding protein-3 (IGFBP-3), irisin and cytokines levels in patients with type 1 diabetes (T1D).Methods:A total of 14 individuals with T1D (age: 28.7 ± 7.3 years) and 14 healthy adults (age: 27.1 ± 3.9 years) performed 40-min continuous Ex at moderate intensity (50% lactate threshold) on a cycle ergometer in normoxia (Nor) and Hyp (FiO2 = 15.1%) Biochemical factors, glucose concentrations and physiological variables were measured at rest, immediately and up to 24 h after both Ex protocols.Results:Patients with T1D had significantly lower pre-Ex serum concentrations of BDNF (p < 0.05, p < 0.01), and total IGF-1 (p < 0.001, p < 0.05) and significantly higher irisin levels (p < 0.05, p < 0.01) in Nor and Hyp, compared with healthy subjects. Ex significantly increased in T1D group serum BDNF (in Nor only p < 0.05) and total IGF-1 levels in Nor and Hyp (p < 0.001 and p < 0.01, respectively). Immediately after Ex in Hyp, freeIGF-1 (p < 0.05) and irisin levels (p < 0.001) were significantly higher compared with the levels induced by Ex alone. Free IGF-1 and irisin serum levels remained elevated in 24 h post-Ex in Hyp. In T1D, significant blood glucose (BG) decrease was observed immediately after Ex in Hyp (p < 0.001) and in 24 h recovery (p < 0.001) compared with pre-Ex level.Conclusion:The study results suggest that moderate intensity continuous Ex has beneficial effect on BDNF and IGF-1 levels. Ex in hypoxic conditions may be more effective in increasing availability of IGF-1. The alterations in the post-Ex irisin levels and IGF-1 system may be contributing to more effective glycaemia control in patients with T1D.
U2 - 10.1177/2042018820925326
DO - 10.1177/2042018820925326
M3 - Article
SN - 2042-0188
VL - 11
JO - Therapeutic Advances in Endocrinology and Metabolism
JF - Therapeutic Advances in Endocrinology and Metabolism
ER -