Modulation of neuronal cell affinity on PEDOT–PSS non-woven silk scaffolds for neural tissue engineering

Adrian Magaz, Ben Spencer, John G Hardy, Xu Li, Julie Gough, Jonny Blaker (Corresponding)

Research output: Contribution to journalArticlepeer-review

37 Downloads (Pure)

Abstract

Peripheral nerve injury is a common consequence of trauma with low regenerative potential. Electroconductive scaffolds can provide appropriate cell growth microenvironments and synergistic cell guidance cues for nerve tissue engineering. In the present study, electrically conductive scaffolds were prepared by conjugating poly (3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT-PSS) or dimethyl sulfoxide (DMSO)-treated PEDOT-PSS on electrospun silk scaffolds. Conductance could be tuned by the coating concentration and was further boosted by DMSO treatment. Analogue NG108-15 neuronal cells were cultured on the scaffolds to evaluate neuronal cell growth, proliferation, and differentiation. Cellular viability was maintained on all scaffold groups while showing comparatively better metabolic activity and proliferation than neat silk. DMSO-treated PEDOT-PSS functionalized scaffolds partially outperformed their PEDOT-PSS counterparts. Differentiation assessments suggested that these PEDOT-PSS assembled silk scaffolds could support neurite sprouting, indicating that they show promise to be used as a future platform to restore electrochemical coupling at the site of injury and preserve normal nerve function.

Original languageEnglish
Article number10.1021/acsbiomaterials.0c01239
Pages (from-to)6906-6916
JournalACS Biomaterials Science & Engineering
Volume6
Issue number12
Early online date16 Nov 2020
DOIs
Publication statusPublished - 14 Dec 2020

Keywords

  • PEDOT-PSS
  • electrospinning
  • neuronal scaffold
  • silk fibroin

Research Beacons, Institutes and Platforms

  • Henry Royce Institute

Fingerprint

Dive into the research topics of 'Modulation of neuronal cell affinity on PEDOT–PSS non-woven silk scaffolds for neural tissue engineering'. Together they form a unique fingerprint.

Cite this