Abstract
We report the modulation of reactivity of nitrogen dioxide (NO2) in a charged metal-organic framework (MOF) material, MFM-305-CH3 in which unbound N-centres are methylated and the cationic charge counter-balanced by Cl− ions in the pores. Uptake of NO2 into MFM-305-CH3 leads to reaction between NO2 and Cl– to give nitrosyl chloride (NOCl) and NO3− anions. A high dynamic uptake of 6.58 mmol g−1 at 298 K is observed for MFM-305-CH3 as measured using a flow of 500 ppm NO2 in He. In contrast, the analogous neutral material, MFM-305, shows a much lower uptake of 2.38 mmol g−1. The binding domains and reactivity of adsorbed NO2 molecules within MFM-305-CH3 and MFM-305 have been probed using in situ synchrotron X-ray diffraction, inelastic neutron scattering and by electron paramagnetic resonance, high-field solid-state nuclear magnetic resonance and UV-vis spectroscopies. The design of charged porous sorbents provides a new platform to control the reactivity of corrosive air pollutants.
Original language | English |
---|---|
Journal | Angewandte Chemie International Edition |
Early online date | 7 Apr 2023 |
DOIs | |
Publication status | E-pub ahead of print - 7 Apr 2023 |