Molecular Basis of Sulfosugar Selectivity in Sulfoglycolysis

Mahima Sharma, Palika Abayakoon, Ruwan Epa, Yi Jin, James P. Lingford, Tomohiro Shimada, Masahiro Nakano, Janice W.-Y. Mui, Akira Ishihama, Ethan D. Goddard-Borger, Gideon J. Davies, Spencer J. Williams

Research output: Contribution to journalArticlepeer-review


The sulfosugar sulfoquinovose (SQ) is produced by essentially all photosynthetic organisms on Earth and is metabolized by bacteria through the process of sulfoglycolysis. The sulfoglycolytic Embden-Meyerhof-Parnas pathway metabolizes SQ to produce dihydroxyacetone phosphate and sulfolactaldehyde and is analogous to the classical Embden-Meyerhof-Parnas glycolysis pathway for the metabolism of glucose-6-phosphate, though the former only provides one C3 fragment to central metabolism, with excretion of the other C3 fragment as dihydroxypropanesulfonate. Here, we report a comprehensive structural and biochemical analysis of the three core steps of sulfoglycolysis catalyzed by SQ isomerase, sulfofructose (SF) kinase, and sulfofructose-1-phosphate (SFP) aldolase. Our data show that despite the superficial similarity of this pathway to glycolysis, the sulfoglycolytic enzymes are specific for SQ metabolites and are not catalytically active on related metabolites from glycolytic pathways. This observation is rationalized by three-dimensional structures of each enzyme, which reveal the presence of conserved sulfonate binding pockets. We show that SQ isomerase acts preferentially on the β-Anomer of SQ and reversibly produces both SF and sulforhamnose (SR), a previously unknown sugar that acts as a derepressor for the transcriptional repressor CsqR that regulates SQ-utilization. We also demonstrate that SF kinase is a key regulatory enzyme for the pathway that experiences complex modulation by the metabolites SQ, SLA, AMP, ADP, ATP, F6P, FBP, PEP, DHAP, and citrate, and we show that SFP aldolase reversibly synthesizes SFP. This body of work provides fresh insights into the mechanism, specificity, and regulation of sulfoglycolysis and has important implications for understanding how this biochemistry interfaces with central metabolism in prokaryotes to process this major repository of biogeochemical sulfur.

Original languageEnglish
Pages (from-to)476-487
Number of pages12
JournalACS Central Science
Issue number3
Early online date23 Feb 2021
Publication statusPublished - 24 Mar 2021


Dive into the research topics of 'Molecular Basis of Sulfosugar Selectivity in Sulfoglycolysis'. Together they form a unique fingerprint.

Cite this