Abstract
The velocity distribution of He atoms evaporating from a slab of liquid dodecane has been simulated. The distribution composed of ∼10 000 He trajectories is shifted to fractionally faster velocities as compared to a Maxwell–Boltzmann distribution at the temperature of the liquid dodecane with an average translational energy of 1.05 × 2RT (or 1.08 × 2RT after correction for a cylindrical liquid jet), compared to the experimental work by Nathanson and co-workers (1.14 × 2RT) on liquid jets. Analysis of the trajectories allows us to infer mechanistic information about the modes of evaporation, and their contribution to the overall velocity distribution.
Original language | English |
---|---|
Pages (from-to) | 53-57 |
Number of pages | 4 |
Journal | Chemical Physics Letters |
Volume | 629 |
DOIs | |
Publication status | Published - 15 Apr 2015 |