Molecular tracking of leukemogenesis in a triplet pregnancy

Tim Eden, Ana Teresa Maia, Anthony M. Ford, G. Reza Jalali, Christine J. Harrison, G. Malcolm Taylor, Osborn B. Eden, Mel F. Greaves

    Research output: Contribution to journalArticlepeer-review

    Abstract

    The occurrence of childhood acute lymphoblastic leukemia (ALL) in 2 of 3 triplets provided a unique opportunity for the investigation of leukemogenesis and the natural history of ALL. The 2 leukemic triplets were monozygotic twins and shared an identical, acquired TEL-AML1 genomic fusion sequence indicative of a single-cell origin in utero in one fetus followed by dissemination of clonal progeny to the comonozygotic twin by intraplacental transfer. In accord with this interpretation, clonotypic TEL-AML1 fusion sequences could be amplified from the archived neonatal blood spots of the leukemic twins. The blood spot of the third, healthy, dizygotic triplet was also fusion gene positive in a single segment, though at age 3 years, his blood was found negative by sensitive polymerase chain reaction (PCR) screening for the genomic sequence and by reverse transcription-PCR. Leukemic cells in both twins had, in addition to TEL-AML1 fusion, a deletion of the normal, nonrearranged TEL allele. However, this genetic change was found by fluorescence in situ hybridization to be subclonal in both twins. Furthermore, mapping of the genomic boundaries of TEL deletions using microsatellite markers indicated that they were individually distinct in the twins and therefore must have arisen as independent and secondary events, probably after birth. These data support a multihit temporal model for the pathogenesis of the common form of childhood leukemia. © 2001 by The American Society of Hematology.
    Original languageEnglish
    Pages (from-to)478-482
    Number of pages4
    JournalBlood
    Volume98
    Issue number2
    DOIs
    Publication statusPublished - 15 Jul 2001

    Keywords

    • dinosaurs

    Fingerprint

    Dive into the research topics of 'Molecular tracking of leukemogenesis in a triplet pregnancy'. Together they form a unique fingerprint.

    Cite this