Mortality risk prediction in burn injury: Comparison of logistic regression with machine learning approaches.

N Stylianou, A Akbarov, E Kontopantelis, I Buchan, K W Dunn

    Research output: Contribution to journalArticlepeer-review

    Abstract

    INTRODUCTION: Predicting mortality from burn injury has traditionally employed logistic regression models. Alternative machine learning methods have been introduced in some areas of clinical prediction as the necessary software and computational facilities have become accessible. Here we compare logistic regression and machine learning predictions of mortality from burn. METHODS: An established logistic mortality model was compared to machine learning methods (artificial neural network, support vector machine, random forests and naive Bayes) using a population-based (England & Wales) case-cohort registry. Predictive evaluation used: area under the receiver operating characteristic curve; sensitivity; specificity; positive predictive value and Youden's index. RESULTS: All methods had comparable discriminatory abilities, similar sensitivities, specificities and positive predictive values. Although some machine learning methods performed marginally better than logistic regression the differences were seldom statistically significant and clinically insubstantial. Random forests were marginally better for high positive predictive value and reasonable sensitivity. Neural networks yielded slightly better prediction overall. Logistic regression gives an optimal mix of performance and interpretability. DISCUSSION: The established logistic regression model of burn mortality performs well against more complex alternatives. Clinical prediction with a small set of strong, stable, independent predictors is unlikely to gain much from machine learning outside specialist research contexts.
    Original languageEnglish
    Pages (from-to)925-934
    Number of pages9
    JournalBurns
    Volume41
    Issue number5
    DOIs
    Publication statusPublished - Aug 2015

    Keywords

    • Burn
    • Clinical prediction
    • Machine learning
    • Mortality

    Fingerprint

    Dive into the research topics of 'Mortality risk prediction in burn injury: Comparison of logistic regression with machine learning approaches.'. Together they form a unique fingerprint.

    Cite this