TY - JOUR
T1 - Multi-Functional Electrospun AgNO3/PVB and Its Ag NP/PVB Nanofiber Membrane
AU - Yan, Taohai
AU - Cao , Shengbin
AU - Shi, Yajing
AU - Huang , Luming
AU - Ou, Yang
AU - Gong, Hugh
PY - 2023/8/21
Y1 - 2023/8/21
N2 - This study focuses on the fabrication of fiber membranes containing different concentrations of AgNO3 via the electrospinning technique. The AgNO3 present in the fibers is subsequently reduced to silver nanoparticles (Ag NPs) through UV irradiation. The resulting nanofiber film is characterized using scanning electron microscopy, X-ray diffraction, and evaluations of its anti-UV and anti-electromagnetic radiation properties. Experimental results demonstrate that increasing the AgNO3 content initially decreases and then increases the fiber diameter and fiber diameter deviation. Under UV light, the nanofibers fuse and bond, leading to an increase in the fiber diameter. AgNO3 is effectively reduced to Ag NPs after UV irradiation for more than 60 min, as confirmed by the characteristic diffraction peaks of Ag NPs in the XRD spectrum of the irradiated AgNO3/PVB fibers. The nanofiber film containing AgNO3 exhibits superior anti-UV performance compared to the film containing AgNO3-derived Ag NPs. The anti-electromagnetic radiation performances of the nanofiber films containing AgNO3 and AgNO3-derived Ag NPs are similar, but the nanofiber film containing AgNO3-derived Ag NPs exhibits higher performance at approximately 2.5 GHZ frequency. Additionally, at an AgNO3 concentration of less than 0.5 wt%, the anti-electromagnetic radiation performance is poor, and the shielding effect of the nanofiber film on medium- and low-frequency electromagnetic waves surpasses that on high-frequency waves. This study provides guidance for the preparation of polyvinyl butyral nanofibers, Ag NPs, and functional materials with anti-ultraviolet and anti-electromagnetic radiation properties.
AB - This study focuses on the fabrication of fiber membranes containing different concentrations of AgNO3 via the electrospinning technique. The AgNO3 present in the fibers is subsequently reduced to silver nanoparticles (Ag NPs) through UV irradiation. The resulting nanofiber film is characterized using scanning electron microscopy, X-ray diffraction, and evaluations of its anti-UV and anti-electromagnetic radiation properties. Experimental results demonstrate that increasing the AgNO3 content initially decreases and then increases the fiber diameter and fiber diameter deviation. Under UV light, the nanofibers fuse and bond, leading to an increase in the fiber diameter. AgNO3 is effectively reduced to Ag NPs after UV irradiation for more than 60 min, as confirmed by the characteristic diffraction peaks of Ag NPs in the XRD spectrum of the irradiated AgNO3/PVB fibers. The nanofiber film containing AgNO3 exhibits superior anti-UV performance compared to the film containing AgNO3-derived Ag NPs. The anti-electromagnetic radiation performances of the nanofiber films containing AgNO3 and AgNO3-derived Ag NPs are similar, but the nanofiber film containing AgNO3-derived Ag NPs exhibits higher performance at approximately 2.5 GHZ frequency. Additionally, at an AgNO3 concentration of less than 0.5 wt%, the anti-electromagnetic radiation performance is poor, and the shielding effect of the nanofiber film on medium- and low-frequency electromagnetic waves surpasses that on high-frequency waves. This study provides guidance for the preparation of polyvinyl butyral nanofibers, Ag NPs, and functional materials with anti-ultraviolet and anti-electromagnetic radiation properties.
KW - Electrospinning
KW - PVB fiber
KW - AgNO3
KW - Ag NPs
KW - Anti-UV
KW - Anti-electromagnetic radiation
U2 - 10.3390/molecules28166157
DO - 10.3390/molecules28166157
M3 - Article
SN - 1420-3049
VL - 28
JO - Molecules
JF - Molecules
IS - 16
M1 - 6157
ER -