Multi-input and dataset-invariant adversarial learning (MDAL) for left and right-ventricular coverage estimation in cardiac MRI

Le Zhang*, Marco Pereañez, Stefan K. Piechnik, Stefan Neubauer, Steffen E. Petersen, Alejandro F. Frangi

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

Abstract

Cardiac functional parameters, such as, the Ejection Fraction (EF) and Cardiac Output (CO) of both ventricles, are most immediate indicators of normal/abnormal cardiac function. To compute these parameters, accurate measurement of ventricular volumes at end-diastole (ED) and end-systole (ES) are required. Accurate volume measurements depend on the correct identification of basal and apical slices in cardiac magnetic resonance (CMR) sequences that provide full coverage of both left (LV) and right (RV) ventricles. This paper proposes a novel adversarial learning (AL) approach based on convolutional neural networks (CNN) that detects and localizes the basal/apical slices in an image volume independently of image-acquisition parameters, such as, imaging device, magnetic field strength, variations in protocol execution, etc. The proposed model is trained on multiple cohorts of different provenance, and learns image features from different MRI viewing planes to learn the appearance and predict the position of the basal and apical planes. To the best of our knowledge, this is the first work tackling the fully automatic detection and position regression of basal/apical slices in CMR volumes in a dataset-invariant manner. We achieve this by maximizing the ability of a CNN to regress the position of basal/apical slices within a single dataset, while minimizing the ability of a classifier to discriminate image features between different data sources. Our results show superior performance over state-of-the-art methods.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
EditorsGabor Fichtinger, Christos Davatzikos, Carlos Alberola-López, Alejandro F. Frangi, Julia A. Schnabel
PublisherSpringer-Verlag Italia
Pages481-489
Number of pages9
ISBN (Print)9783030009335
DOIs
Publication statusPublished - 2018
Event21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spain
Duration: 16 Sept 201820 Sept 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11071 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
Country/TerritorySpain
CityGranada
Period16/09/1820/09/18

Keywords

  • Adversarial learning
  • Dataset invariance
  • Deep learning
  • MRI
  • Ventricular coverage assessment

Fingerprint

Dive into the research topics of 'Multi-input and dataset-invariant adversarial learning (MDAL) for left and right-ventricular coverage estimation in cardiac MRI'. Together they form a unique fingerprint.

Cite this