TY - GEN
T1 - Multi-input and dataset-invariant adversarial learning (MDAL) for left and right-ventricular coverage estimation in cardiac MRI
AU - Zhang, Le
AU - Pereañez, Marco
AU - Piechnik, Stefan K.
AU - Neubauer, Stefan
AU - Petersen, Steffen E.
AU - Frangi, Alejandro F.
N1 - Publisher Copyright:
© Springer Nature Switzerland AG 2018.
PY - 2018
Y1 - 2018
N2 - Cardiac functional parameters, such as, the Ejection Fraction (EF) and Cardiac Output (CO) of both ventricles, are most immediate indicators of normal/abnormal cardiac function. To compute these parameters, accurate measurement of ventricular volumes at end-diastole (ED) and end-systole (ES) are required. Accurate volume measurements depend on the correct identification of basal and apical slices in cardiac magnetic resonance (CMR) sequences that provide full coverage of both left (LV) and right (RV) ventricles. This paper proposes a novel adversarial learning (AL) approach based on convolutional neural networks (CNN) that detects and localizes the basal/apical slices in an image volume independently of image-acquisition parameters, such as, imaging device, magnetic field strength, variations in protocol execution, etc. The proposed model is trained on multiple cohorts of different provenance, and learns image features from different MRI viewing planes to learn the appearance and predict the position of the basal and apical planes. To the best of our knowledge, this is the first work tackling the fully automatic detection and position regression of basal/apical slices in CMR volumes in a dataset-invariant manner. We achieve this by maximizing the ability of a CNN to regress the position of basal/apical slices within a single dataset, while minimizing the ability of a classifier to discriminate image features between different data sources. Our results show superior performance over state-of-the-art methods.
AB - Cardiac functional parameters, such as, the Ejection Fraction (EF) and Cardiac Output (CO) of both ventricles, are most immediate indicators of normal/abnormal cardiac function. To compute these parameters, accurate measurement of ventricular volumes at end-diastole (ED) and end-systole (ES) are required. Accurate volume measurements depend on the correct identification of basal and apical slices in cardiac magnetic resonance (CMR) sequences that provide full coverage of both left (LV) and right (RV) ventricles. This paper proposes a novel adversarial learning (AL) approach based on convolutional neural networks (CNN) that detects and localizes the basal/apical slices in an image volume independently of image-acquisition parameters, such as, imaging device, magnetic field strength, variations in protocol execution, etc. The proposed model is trained on multiple cohorts of different provenance, and learns image features from different MRI viewing planes to learn the appearance and predict the position of the basal and apical planes. To the best of our knowledge, this is the first work tackling the fully automatic detection and position regression of basal/apical slices in CMR volumes in a dataset-invariant manner. We achieve this by maximizing the ability of a CNN to regress the position of basal/apical slices within a single dataset, while minimizing the ability of a classifier to discriminate image features between different data sources. Our results show superior performance over state-of-the-art methods.
KW - Adversarial learning
KW - Dataset invariance
KW - Deep learning
KW - MRI
KW - Ventricular coverage assessment
UR - http://www.scopus.com/inward/record.url?scp=85054063351&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-00934-2_54
DO - 10.1007/978-3-030-00934-2_54
M3 - Conference contribution
AN - SCOPUS:85054063351
SN - 9783030009335
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 481
EP - 489
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
A2 - Fichtinger, Gabor
A2 - Davatzikos, Christos
A2 - Alberola-López, Carlos
A2 - Frangi, Alejandro F.
A2 - Schnabel, Julia A.
PB - Springer-Verlag Italia
T2 - 21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
Y2 - 16 September 2018 through 20 September 2018
ER -