Multi-modal synthesis of ASL-MRI features with KPLS regression on heterogeneous data

Toni Lassila*, Helena M. Faria, Ali Sarrami-Foroushani, Francesca Meneghello, Annalena Venneri, Alejandro F. Frangi

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

Abstract

Machine learning classifiers are frequently trained on heterogeneous multi-modal imaging data, where some patients have missing modalities. We address the problem of synthesising arterial spin labelling magnetic resonance imaging (ASL-MRI) - derived cerebral blood flow (CBF) - features in a heterogeneous data set. We synthesise ASL-MRI features using T1-weighted structural MRI (sMRI) and carotid ultrasound flow features. To deal with heterogeneous data, we extend the kernel partial least squares regression (kPLSR) - method to the case where both input and output data have partial coverage. The utility of the synthetic CBF features is tested on a binary classification problem of mild cognitive impairment patients vs. controls. Classifiers based on sMRI and synthetic ASL-MRI features are combined using a maximum probability rule, achieving a balanced accuracy of 92% (sensitivity 100 %, specificity 80 %) in a separate validation set. Comparison is made against support vector machine-classifiers from literature.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
EditorsAlejandro F. Frangi, Christos Davatzikos, Gabor Fichtinger, Carlos Alberola-López, Julia A. Schnabel
PublisherSpringer-Verlag Italia
Pages473-481
Number of pages9
ISBN (Print)9783030009304
DOIs
Publication statusPublished - 2018
Event21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spain
Duration: 16 Sept 201820 Sept 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11072 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
Country/TerritorySpain
CityGranada
Period16/09/1820/09/18

Fingerprint

Dive into the research topics of 'Multi-modal synthesis of ASL-MRI features with KPLS regression on heterogeneous data'. Together they form a unique fingerprint.

Cite this