Multilevel sequential monte carlo samplers for normalizing constants

Pierre Del Moral, Ajay Jasra, Kody J.H. Law, Yan Zhou

    Research output: Contribution to journalArticlepeer-review

    98 Downloads (Pure)

    Abstract

    This article considers the Sequential Monte Carlo (SMC) approximation of ratios of normalizing constants associated to posterior distributions which in principle rely on continuum models. Therefore, the Monte Carlo estimation error and the discrete approximation error must be balanced. A multilevel strategy is utilized to substantially reduce the cost to obtain a given error level in the approximation as compared to standard estimators. Two estimators are considered and relative variance bounds are given. The theoretical results are numerically illustrated for two Bayesian inverse problems arising from elliptic Partial Differential Equations (PDEs). The examples involve the inversion of observations of the solution of (i) a one-dimensional Poisson equation to infer the diffusion coefficient, and (ii) a two-dimensional Poisson equation to infer the external forcing.

    Original languageEnglish
    Article number20
    JournalACM Transactions on Modeling and Computer Simulation
    Volume27
    Issue number3
    DOIs
    Publication statusPublished - 1 Aug 2017

    Keywords

    • Bayesian inverse problems
    • Multilevel Monte Carlo
    • Sequential Monte Carlo

    Fingerprint

    Dive into the research topics of 'Multilevel sequential monte carlo samplers for normalizing constants'. Together they form a unique fingerprint.

    Cite this