Multiscale investigation of pore network heterogeneity and permeability of fluid catalytic cracking (FCC) particles

Zhipeng Qie, Arash Rabbani, Yan Liang, Fei Sun, Julia Behnsen, Ying Wang, Shaogang Wang, Yuming Zhang, Hassan Alhassawi, Jihui Gao, Guangbo Zhao, Masoud Babaei, Arthur A. Garforth, Yilai Jiao, Xiaolei Fan

Research output: Contribution to journalArticlepeer-review

Abstract

Pore network is regarded as one of the most important aspects of FCC (Fluid Catalytic Cracking) catalysts for delivering reactants to active sites and transporting out products, and the structure of which can significantly influence the process efficiency. In this work, six characterization methods complementing each other were employed to study the full-scale pore structure (0.4 nm − 20 µm) of fresh FCC particles, especially the X-ray computed tomography (CT) and focused ion beam-scanning electron microscope (FIB-SEM). To focus on nano-scale pores, 3D reconstruction of a whole FCC particle was achieved based on nano-CT, from which the pore network model (PNM) was successfully extracted. Then, permeability simulations along different directions and through various sub-volumes were carried out to demonstrate the anisotropy and heterogeneity of pore structure, respectively. It was also found that the tortuosity of the pores distributed in the outer layer of the FCC particle was more significant than that in the central part of the particle, which could be the mass transfer limiting region during catalysis. Comprehensive acknowledgment of pore structure provides guidance for the optimization of the design of FCC particles, and the multi-scale characterization strategy is a generic strategy for in-depth investigation of structured porous materials.
Original languageEnglish
Pages (from-to)135843
JournalChemical Engineering Journal
Volume440
Early online date15 Mar 2022
DOIs
Publication statusPublished - 15 Jul 2022

Fingerprint

Dive into the research topics of 'Multiscale investigation of pore network heterogeneity and permeability of fluid catalytic cracking (FCC) particles'. Together they form a unique fingerprint.

Cite this