Mutual information as a measure of image quality for 3D dynamic lung imaging with EIT.

M G Crabb, J L Davidson, R Little, P Wright, A R Morgan, C A Miller, J H Naish, G J M Parker, R Kikinis, H McCann, W R B Lionheart

    Research output: Contribution to journalArticlepeer-review

    Abstract

    We report on a pilot study of dynamic lung electrical impedance tomography (EIT) at the University of Manchester. Low-noise EIT data at 100 frames per second were obtained from healthy male subjects during controlled breathing, followed by magnetic resonance imaging (MRI) subsequently used for spatial validation of the EIT reconstruction. The torso surface in the MR image and electrode positions obtained using MRI fiducial markers informed the construction of a 3D finite element model extruded along the caudal-distal axis of the subject. Small changes in the boundary that occur during respiration were accounted for by incorporating the sensitivity with respect to boundary shape into a robust temporal difference reconstruction algorithm. EIT and MRI images were co-registered using the open source medical imaging software, 3D Slicer. A quantitative comparison of quality of different EIT reconstructions was achieved through calculation of the mutual information with a lung-segmented MR image. EIT reconstructions using a linear shape correction algorithm reduced boundary image artefacts, yielding better contrast of the lungs, and had 10% greater mutual information compared with a standard linear EIT reconstruction.
    Original languageEnglish
    Pages (from-to)863-879
    Number of pages16
    JournalPhysiological Measurement
    Volume35
    Issue number5
    DOIs
    Publication statusPublished - May 2014

    Keywords

    • 3D lung EIT
    • image co-registration
    • MRI
    • mutual information

    Fingerprint

    Dive into the research topics of 'Mutual information as a measure of image quality for 3D dynamic lung imaging with EIT.'. Together they form a unique fingerprint.

    Cite this