Myofiber orientation and electrical activation in human and sheep atrial models.

Jichao Zhao, Martin W Krueger, Gunnar Seemann, Shu Meng, Henggui Zhang, Olaf Dössel, Ian J LeGrice, Bruce H Smaill

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Anatomically realistic computational models provide a powerful platform for investigating mechanisms that underlie atrial rhythm disturbances. In recent years, novel techniques have been developed to construct structurally-detailed, image-based models of 3D atrial anatomy. However, computational models still do not contain full descriptions of the atrial intramural myofiber architecture throughout the entire atria. To address this, a semi-automatic rule-based method was developed for generating multi-layer myofiber orientations in the human atria. The rules for fiber generation are based on the careful anatomic studies of Ho, Anderson and co-workers using dissection, macrophotography and visual tracing of fiber tracts. Separately, a series of high color contrast images were obtained from sheep atria with a novel confocal surface microscopy method. Myofiber orientations in the normal sheep atria were estimated by eigen-analyis of the 3D image structure tensor. These data have been incorporated into an anatomical model that provides the quantitative representation of myofiber architecture in the atrial chambers. In this study, we attempted to compare the two myofiber generation approaches. We observed similar myo-bundle structure in the human and sheep atria, for example in Bachmann's bundle, atrial septum, pectinate muscles, superior vena cava and septo-pulmonary bundle. Our computational simulations also confirmed that the preferential propagation pathways of the activation sequence in both atrial models is qualitatively similar, largely due to the domination of the major muscle bundles.

    Fingerprint

    Dive into the research topics of 'Myofiber orientation and electrical activation in human and sheep atrial models.'. Together they form a unique fingerprint.

    Cite this