Narrow gap laser welding for potential nuclear pressure vessel manufacture

Jiecai Feng, Wei Guo, John Francis, Neil Irvine, Lin Li

    Research output: Contribution to journalArticlepeer-review


    High power density electron beam and laser beam welding show their unique advantages in the welding of thick-section steels for potential nuclear pressure vessel manufacture. Compared with traditional submerged arc welding or newly developed narrow-gap submerged arc welding, electron beam welding and laser beam welding techniques offer high welding speeds, low heat inputs, lower levels of residual stresses and distortion, while consuming less filler material and power. As a part of the new nuclear manufacturing EPSRC Program, this study aimed to develop narrow gap laser welding procedures and parameters for joining 30-130 mm thick ferritic steels for potential application to pressure vessel manufacture in civil nuclear power plants. The results showed that high quality welded joints in 30 mm thick steels had been achieved with a combination of an autogenous root pass and multipass narrow gap (4-5 mm parallel grooves) welding with a defocused laser beam welding and filler wire addition, at laser powers of 7.5-8 kW, a welding velocity of 0.4 m/min, a diameter of the laser spot of 6 mm, and wire feed rates of 4-6 m/min. The results also showed that cracking, lack of sidewall fusion, and porosity were the main defects in multiple pass narrow gap laser welds in thick-section ferritic steels if the welding parameters were not optimized. The microhardness of the multipass weld was lower than that of the autogenous weld as tempered martensite was achieved in multipass welding.

    Original languageEnglish
    Article number022421
    JournalJournal of Laser Applications
    Issue number2
    Publication statusPublished - 1 May 2016


    • laser welding
    • narrow gap
    • nuclear pressure vessel
    • thick-section


    Dive into the research topics of 'Narrow gap laser welding for potential nuclear pressure vessel manufacture'. Together they form a unique fingerprint.

    Cite this