Abstract
The study aimed to explore the influence of the network architecture on the mechanical properties and degradability of HA/PEG gels, and to highlight the relationship between Young's modulus and cell colonization with a selected architecture. Three different families of hyaluronic acid (HA)-based photopolymerized PEG diacrylate (PEGDA) hydrogels were compared, using different concentrations and molecular weights (64 and 234 kDa) of HA: semi-IPNs containing native HA in a PEG network (type I gels); co-networks obtained using thiolated HA as chain transfer agent during PEGDA polymerization (type II gels); co-networks obtained from the in situ preparation of a macromonomer derived from the Michael-type addition of thiolated HA on PEGDA (type III gels). From a comparative study of rheological properties and enzymatic degradability, type II gels were selected for a further study aiming to link their mechanical properties to cell spreading. Employing RGD-functionalized materials, Young's moduli were measured via AFM nanoindentation while the cell spreading behavior was quantitatively evaluated by monitoring morphology and metabolic activity (MTS assay) of L929 fibroblasts. By revealing a clear relation between increasing modulus and increasing cell spreading/proliferation, the study showed the possibility to fine tune the cell/material interactions with appropriate reactive processing techniques. © 2011 Elsevier Ltd.
Original language | English |
---|---|
Pages (from-to) | 6456-6470 |
Number of pages | 14 |
Journal | Biomaterials |
Volume | 32 |
Issue number | 27 |
DOIs | |
Publication status | Published - Sept 2011 |
Keywords
- Cell spreading
- Fibroblasts
- Hyaluronic acid
- Nanoindentation
- Photopolymerization