Abstract
We present a bio-inspired, hardware/software architecture to perform Markov Chain Monte Carlo sampling on probabilistic graphical models using energy aware hardware. We have developed algorithms and programming data flows for two recently developed multiprocessor architectures, the SpiNNaker and Parallella. We employ a neurally inspired sampling algorithm that abstracts the functionality of neurons in a biological network and exploits the neural dynamics to implement the sampling process. This algorithm maps nicely on the two hardware systems. Speedups as high as 1000 fold are achieved when performing inference using this approach, compared to algorithms running on traditional engineering workstations.
Original language | English |
---|---|
Title of host publication | LASCAS 2016 - 7th IEEE Latin American Symposium on Circuits and Systems, R9 IEEE CASS Flagship Conference |
Publisher | IEEE |
Pages | 399-402 |
Number of pages | 4 |
ISBN (Print) | 9781467378352 |
DOIs | |
Publication status | Published - 14 Apr 2016 |
Event | 7th IEEE Latin American Symposium on Circuits and Systems, LASCAS 2016 - Florianopolis, Brazil Duration: 27 Feb 2016 → 1 Mar 2016 |
Conference
Conference | 7th IEEE Latin American Symposium on Circuits and Systems, LASCAS 2016 |
---|---|
Country/Territory | Brazil |
City | Florianopolis |
Period | 27/02/16 → 1/03/16 |