New insights into saline water evaporation from porous media: Complex interaction between evaporation rates, precipitation and surface temperature

Salome Shokri, Thomas Vetter, Colin Webb, Nima Shokri

    Research output: Contribution to journalArticlepeer-review

    509 Downloads (Pure)

    Abstract

    Understanding salt transport and deposition patterns during evaporation from porous media is important in many engineering and hydrological processes such as soil salinization, ecosystem functioning and land-atmosphere interaction. As evaporation proceeds, salt concentration increases until it exceeds solubility limits, locally, and crystals precipitate. The interplay between transport processes, crystallization and evaporation influences where crystallization occurs. During early stages, the precipitated salt creates an evolving porous structure affecting the evaporation kinetics. We conducted a comprehensive series of experiments to investigate how the salt concentration and precipitation influence evaporation dynamics. Our results illustrate the contribution of the evolving salt crust to the evaporative mass losses. High-resolution thermal imaging enabled us to investigate the complex temperature dynamics at the surface of precipitated salt, providing further confirmation of salt crust contribution to the evaporation. We identify different phases of saline water evaporation from porous media with the corresponding dominant mechanisms in each phase and extend the physical understanding of such processes.
    Original languageEnglish
    Pages (from-to)5504–5510
    JournalGeophysical Research Letters
    Volume44
    Issue number11
    Early online date22 May 2017
    DOIs
    Publication statusPublished - 2017

    Fingerprint

    Dive into the research topics of 'New insights into saline water evaporation from porous media: Complex interaction between evaporation rates, precipitation and surface temperature'. Together they form a unique fingerprint.

    Cite this