Nitrogen losses from two grassland soils with different fungal biomass

Franciska T. De Vries, Jan Willem van Groenigen, Ellis Hoffland, Jaap Bloem

    Research output: Contribution to journalArticlepeer-review


    Nitrogen losses from agricultural grasslands cause eutrophication of ground- and surface water and contribute to global warming and atmospheric pollution. It is widely assumed that soils with a higher fungal biomass have lower N losses, but this relationship has never been experimentally confirmed. With the increased interest in soil-based ecosystem services and sustainable management of soils, such a relationship would be relevant for agricultural management. Here we present a first attempt to test this relationship experimentally. We used intact soil columns from two plots from a field experiment that had consistent differences in fungal biomass (68 ± 8 vs. 111 ± 9 μg C g-1) as a result of different fertilizer history (80 vs. 40 kg N ha-1 y-1 as farm yard manure), while other soil properties were very similar. We performed two greenhouse experiments: in the main experiment the columns received either mineral fertilizer N or no N (control). We measured N leaching, N2O emission and denitrification from the columns during 4 weeks, after which we analyzed fungal and bacterial biomass and soil N pools. In the additional 15N experiment we traced added N in leachates, soil, plants and microbial biomass. We found that in the main experiment, N2O emission and denitrification were lower in the high fungal biomass soil, irrespective of the addition of fertilizer N. Higher 15N recovery in the high fungal biomass soil also indicated lower N losses through dentrification. In the main experiment, N leaching after fertilizer addition showed a 3-fold increase compared to the control in low fungal biomass soil (11.9 ± 1.0 and 3.9 ± 1.0 kg N ha-1, respectively), but did not increase in high fungal biomass soil (6.4 ± 0.9 after N addition vs. 4.5 ± 0.8 kg N ha-1 in the control). Thus, in the high fungal biomass soil more N was immobilized. However, the 15N experiment did not confirm these results; N leaching was higher in high fungal biomass soil, even though this soil showed higher immobilization of 15N into microbial biomass. However, only 3% of total 15N was found in the microbial biomass 2 weeks after the mineral fertilization. Most of the recovered 15N was found in plants (approximately 25%) and soil organic matter (approximately 15%), and these amounts did not differ between the high and the low fungal biomass soil. Our main experiment confirmed the assumption of lower N losses in a soil with higher fungal biomass. The additional 15N experiment showed that higher fungal biomass is probably not the direct cause of higher N retention, but rather the result of low nitrogen availability. Both experiments confirmed that higher fungal biomass can be considered as an indicator of higher nitrogen retention in soils. © 2011 Elsevier Ltd.
    Original languageEnglish
    Pages (from-to)997-1005
    Number of pages8
    JournalSoil Biology and Biochemistry
    Issue number5
    Publication statusPublished - May 2011


    • Bacteria
    • Denitrification
    • Food webs
    • Fungi
    • Grassland
    • Leaching
    • Nitrogen
    • Retention


    Dive into the research topics of 'Nitrogen losses from two grassland soils with different fungal biomass'. Together they form a unique fingerprint.

    Cite this