Abstract
Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC
R. Acciarrig, C. Adamsbb, R. Anh, J. Anthonyc, J. Asaadiy, M. Augera, L. Bagbyg, S. Balasubramanianbb, B. Ballerg, C. Barnesn, G. Barrq, M. Bassq, F. Bayz, M. Bishaib, A. Blakej, T. Boltoni, B. Bullardb, L. Camillerif, D. Caratellif, B. Carlsg, R. Castillo Fernandezg, F. Cavannag, H. Chenb, E. Churchr, D. Ciancil,f, E. Cohenw, G. H. Collinm, J. M. Conradm, M. Converyu, J. I. Crespo-Anadónf, G. De Geronimob, M. Del Tuttoq, D. Devittj, S. Dytmans, B. Eberlyu, A. Ereditatoa, L. Escudero Sanchezc, J. Esquivelv, A.A. Fadeevaf, B.T. Flemingbb, W. Foremand, A.P. Furmanskil, D. Garcia-Gamezl, G.T. Garveyk, V. Gentyf, D. Goeldia, S. Gollapinnii,x, N. Grafs, E. Gramellinibb, H. Greenleeg, R. Grossoe, R. Guenetteq, A. Hackenburgbb, P. Hamiltonv, O. Henm, J. Hewesl, C. Hilll, J. Hod, G. Horton-Smithi, A. Hourlierm, E.-C. Huangk, C. Jamesg, J. Jan de Vriesc, C.-M. Jenaa, L. Jiangs, R.A. Johnsone, J. Joshib, H. Jostleing, D. Kalekof, G. Karagiorgil,f, W. Ketchumg, B. Kirbyb, M. Kirbyg, T. Kobilarcikg, I. Kresloa, A. Laubeq, S. Lib, Y. Lib, A. Listerj, B.R. Littlejohnh, S. Lockwitzg, D. Lorcaa, W.C. Louisk, M. Luethia, B. Lundbergg, X. Luobb, A. Marchionnig, C. Marianiaa, J. Marshallc, D.A. Martinez Caicedoh, V. Meddagei, T. Micelio, G. B. Millsk, J. Moonm, M. Mooneyb, C. D. Mooreg, J. Mousseaun, R. Murrellsl, D. Napless, P. Nienabert, J. Nowakj, O. Palamarag, V. Paolones, V. Papavassiliouo, S. F. Pateo, Z. Pavlovicg, E. Piasetzkyw, D. Porziol, G. Pulliamv, X. Qianb, J. L. Raafg, V. Radekab, A. Rafiquei, S. Resciab, L. Rochesteru, C. Rudolf von Rohra, B. Russellbb, D.W. Schmitzd, A. Schukraftg, W. Seligmanf, M.H. Shaevitzf, J. Sinclaira, A. Smithc, E.L. Sniderg, M. Soderbergv, S. Söldner-Remboldl, S.R. Soletiq, P. Spentzourisg, J. Spitzn, J. St. Johne, T. Straussg, A.M. Szelcl, N. Taggp, K. Teraof, M. Thomsonc, C. Thornb, M. Toupsg, Y.-T. Tsaiu, S. Tufanlibb, T. Usheru, W. Van De Pontseeleq, R.G. Van de Waterk, B. Virenb, M. Webera, D.A. Wickremasinghes, S. Wolbersg, T. Wongjiradm, K. Woodruffo, T. Yangg, L. Yatesm, B. Yub, G.P. Zellerg, J. Zennamod and C. Zhangb Hide full author list
Published 4 August 2017 • © 2017 IOP Publishing Ltd and Sissa Medialab
Journal of Instrumentation, Volume 12, August 2017
Article PDF
Citations
PDF
123 Total downloads
Cited by 1 articles
Article has an altmetric score of 6
Turn on MathJax
Get permission to re-use this article
Share this article
Hide article information
Author e-mails
[email protected]
Author affiliations
a Universität Bern, Bern CH-3012, Switzerland
b Brookhaven National Laboratory (BNL), Upton, NY, 11973, U.S.A.
c University of Cambridge, Cambridge CB3 0HE, United Kingdom
d University of Chicago, Chicago, IL, 60637, U.S.A.
e University of Cincinnati, Cincinnati, OH, 45221, U.S.A.
f Columbia University, New York, NY, 10027, U.S.A.
g Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, U.S.A.
h Illinois Institute of Technology (IIT), Chicago, IL 60616, U.S.A.
i Kansas State University (KSU), Manhattan, KS, 66506, U.S.A.
j Lancaster University, Lancaster LA1 4YW, United Kingdom
k Los Alamos National Laboratory (LANL), Los Alamos, NM, 87545, U.S.A.
l The University of Manchester, Manchester M13 9PL, United Kingdom
m Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, U.S.A.
n University of Michigan, Ann Arbor, MI, 48109, U.S.A.
o New Mexico State University (NMSU), Las Cruces, NM, 88003, U.S.A.
p Otterbein University, Westerville, OH, 43081, U.S.A.
q University of Oxford, Oxford OX1 3RH, United Kingdom
r Pacific Northwest National Laboratory (PNNL), Richland, WA, 99352, U.S.A.
s University of Pittsburgh, Pittsburgh, PA, 15260, U.S.A.
t Saint Mary's University of Minnesota, Winona, MN, 55987, U.S.A.
u SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, U.S.A.
v Syracuse University, Syracuse, NY, 13244, U.S.A.
w Tel Aviv University, Tel Aviv, 69978, Israel
x University of Tennessee, Knoxville, TN, 37996, U.S.A.
y University of Texas, Arlington, TX, 76019, U.S.A.
z TUBITAK Space Technologies Research Institute, METU Campus, TR-06800, Ankara, Turkey
aa Center for Neutrino Physics, Virginia Tech, Blacksburg, VA, 24061, U.S.A.
bb Yale University, New Haven, CT, 06520, U.S.A.
Dates
Received 20 May 2017
Accepted 24 July 2017
Published 4 August 2017
Citation
R. Acciarri et al 2017 JINST 12 P08003
Create citation alert
DOI
https://doi.org/10.1088/1748-0221/12/08/P08003
E-print
http://arxiv.org/abs/1705.07341
Buy this article in print
Journal RSS feed
Sign up for new issue notifications
Abstract
The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outside the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics.
R. Acciarrig, C. Adamsbb, R. Anh, J. Anthonyc, J. Asaadiy, M. Augera, L. Bagbyg, S. Balasubramanianbb, B. Ballerg, C. Barnesn, G. Barrq, M. Bassq, F. Bayz, M. Bishaib, A. Blakej, T. Boltoni, B. Bullardb, L. Camillerif, D. Caratellif, B. Carlsg, R. Castillo Fernandezg, F. Cavannag, H. Chenb, E. Churchr, D. Ciancil,f, E. Cohenw, G. H. Collinm, J. M. Conradm, M. Converyu, J. I. Crespo-Anadónf, G. De Geronimob, M. Del Tuttoq, D. Devittj, S. Dytmans, B. Eberlyu, A. Ereditatoa, L. Escudero Sanchezc, J. Esquivelv, A.A. Fadeevaf, B.T. Flemingbb, W. Foremand, A.P. Furmanskil, D. Garcia-Gamezl, G.T. Garveyk, V. Gentyf, D. Goeldia, S. Gollapinnii,x, N. Grafs, E. Gramellinibb, H. Greenleeg, R. Grossoe, R. Guenetteq, A. Hackenburgbb, P. Hamiltonv, O. Henm, J. Hewesl, C. Hilll, J. Hod, G. Horton-Smithi, A. Hourlierm, E.-C. Huangk, C. Jamesg, J. Jan de Vriesc, C.-M. Jenaa, L. Jiangs, R.A. Johnsone, J. Joshib, H. Jostleing, D. Kalekof, G. Karagiorgil,f, W. Ketchumg, B. Kirbyb, M. Kirbyg, T. Kobilarcikg, I. Kresloa, A. Laubeq, S. Lib, Y. Lib, A. Listerj, B.R. Littlejohnh, S. Lockwitzg, D. Lorcaa, W.C. Louisk, M. Luethia, B. Lundbergg, X. Luobb, A. Marchionnig, C. Marianiaa, J. Marshallc, D.A. Martinez Caicedoh, V. Meddagei, T. Micelio, G. B. Millsk, J. Moonm, M. Mooneyb, C. D. Mooreg, J. Mousseaun, R. Murrellsl, D. Napless, P. Nienabert, J. Nowakj, O. Palamarag, V. Paolones, V. Papavassiliouo, S. F. Pateo, Z. Pavlovicg, E. Piasetzkyw, D. Porziol, G. Pulliamv, X. Qianb, J. L. Raafg, V. Radekab, A. Rafiquei, S. Resciab, L. Rochesteru, C. Rudolf von Rohra, B. Russellbb, D.W. Schmitzd, A. Schukraftg, W. Seligmanf, M.H. Shaevitzf, J. Sinclaira, A. Smithc, E.L. Sniderg, M. Soderbergv, S. Söldner-Remboldl, S.R. Soletiq, P. Spentzourisg, J. Spitzn, J. St. Johne, T. Straussg, A.M. Szelcl, N. Taggp, K. Teraof, M. Thomsonc, C. Thornb, M. Toupsg, Y.-T. Tsaiu, S. Tufanlibb, T. Usheru, W. Van De Pontseeleq, R.G. Van de Waterk, B. Virenb, M. Webera, D.A. Wickremasinghes, S. Wolbersg, T. Wongjiradm, K. Woodruffo, T. Yangg, L. Yatesm, B. Yub, G.P. Zellerg, J. Zennamod and C. Zhangb Hide full author list
Published 4 August 2017 • © 2017 IOP Publishing Ltd and Sissa Medialab
Journal of Instrumentation, Volume 12, August 2017
Article PDF
Citations
123 Total downloads
Cited by 1 articles
Article has an altmetric score of 6
Turn on MathJax
Get permission to re-use this article
Share this article
Hide article information
Author e-mails
[email protected]
Author affiliations
a Universität Bern, Bern CH-3012, Switzerland
b Brookhaven National Laboratory (BNL), Upton, NY, 11973, U.S.A.
c University of Cambridge, Cambridge CB3 0HE, United Kingdom
d University of Chicago, Chicago, IL, 60637, U.S.A.
e University of Cincinnati, Cincinnati, OH, 45221, U.S.A.
f Columbia University, New York, NY, 10027, U.S.A.
g Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, U.S.A.
h Illinois Institute of Technology (IIT), Chicago, IL 60616, U.S.A.
i Kansas State University (KSU), Manhattan, KS, 66506, U.S.A.
j Lancaster University, Lancaster LA1 4YW, United Kingdom
k Los Alamos National Laboratory (LANL), Los Alamos, NM, 87545, U.S.A.
l The University of Manchester, Manchester M13 9PL, United Kingdom
m Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, U.S.A.
n University of Michigan, Ann Arbor, MI, 48109, U.S.A.
o New Mexico State University (NMSU), Las Cruces, NM, 88003, U.S.A.
p Otterbein University, Westerville, OH, 43081, U.S.A.
q University of Oxford, Oxford OX1 3RH, United Kingdom
r Pacific Northwest National Laboratory (PNNL), Richland, WA, 99352, U.S.A.
s University of Pittsburgh, Pittsburgh, PA, 15260, U.S.A.
t Saint Mary's University of Minnesota, Winona, MN, 55987, U.S.A.
u SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, U.S.A.
v Syracuse University, Syracuse, NY, 13244, U.S.A.
w Tel Aviv University, Tel Aviv, 69978, Israel
x University of Tennessee, Knoxville, TN, 37996, U.S.A.
y University of Texas, Arlington, TX, 76019, U.S.A.
z TUBITAK Space Technologies Research Institute, METU Campus, TR-06800, Ankara, Turkey
aa Center for Neutrino Physics, Virginia Tech, Blacksburg, VA, 24061, U.S.A.
bb Yale University, New Haven, CT, 06520, U.S.A.
Dates
Received 20 May 2017
Accepted 24 July 2017
Published 4 August 2017
Citation
R. Acciarri et al 2017 JINST 12 P08003
Create citation alert
DOI
https://doi.org/10.1088/1748-0221/12/08/P08003
E-print
http://arxiv.org/abs/1705.07341
Buy this article in print
Journal RSS feed
Sign up for new issue notifications
Abstract
The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outside the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics.
Original language | English |
---|---|
Journal | Journal of Instrumentation |
DOIs | |
Publication status | Published - 4 Aug 2017 |