Non-symmetrical furan-amidines as novel leads for the treatment of cancer and malaria

Soraya Alnabulsi, Elham Santina, Ilaria Russo, Buthaina Hussein, Manikandan Kadirvel, Amy Chadwick, Elena Bichenkova, Richard Bryce, Karen Nolan, Constantinos Demonacos, Ian Stratford, Sally Freeman

Research output: Contribution to journalArticlepeer-review

507 Downloads (Pure)

Abstract

NRH:quinone oxidoreductase 2 enzyme (NQO2) is a potential therapeutic target in cancer and neurodegenerative diseases, with roles in either chemoprevention or chemotherapy. Here we report the design, synthesis and evaluation of non-symmetrical furan-amidines and their analogues as novel selective NQO2 inhibitors with reduced adverse off-target effects, such as binding to DNA. A pathway for the synthesis of the non-symmetrical furan-amidines was established from the corresponding 1,4-diketones. The synthesized non-symmetrical furan-amidines and their analogues showed potent NQO2 inhibition activity with nano-molar IC50 values. The most active compounds were non-symmetrical furan-amidines with meta- and para-nitro substitution on the aromatic ring, with IC50 values of 15 nM. In contrast to the symmetric furan-amidines, which showed potent intercalation in the minor grooves of DNA, the synthesized non-symmetrical furan-amidines showed no affinity towards DNA, as demonstrated by DNA melting temperature experiments. In addition, Plasmodium parasites, which possess their own quinone oxidoreductase PfNDH2, were inhibited by the non-symmetrical furan-amidines, the most active possessing a para-fluoro substituent (IC50 9.6 nM). The high NQO2 inhibition activity and nanomolar antimalarial effect of some of these analogues suggest the lead compounds are worthy of further development and optimization as potential drugs for novel anti-cancer and antimalarial strategies.

Original languageEnglish
Pages (from-to)33-45
Number of pages13
JournalEuropean Journal of Medicinal Chemistry
Volume111
Early online date21 Jan 2016
DOIs
Publication statusPublished - 23 Mar 2016

Keywords

  • Journal Article
  • Research Support, Non-U.S. Gov't

Fingerprint

Dive into the research topics of 'Non-symmetrical furan-amidines as novel leads for the treatment of cancer and malaria'. Together they form a unique fingerprint.

Cite this