TY - JOUR
T1 - Novel SNP Discovery in African Buffalo, Syncerus caffer, Using High-Throughput Sequencing
AU - le Roex, Nikki
AU - Noyes, Harry
AU - Brass, Andrew
AU - Bradley, Daniel G.
AU - Kemp, Steven J.
AU - Kay, Suzanne
AU - van Helden, Paul D.
AU - Hoal, Eileen G.
N1 - GR066764MA, Wellcome Trust, United Kingdom
PY - 2012/11/7
Y1 - 2012/11/7
N2 - The African buffalo, Syncerus caffer, is one of the most abundant and ecologically important species of megafauna in the savannah ecosystem. It is an important prey species, as well as a host for a vast array of nematodes, pathogens and infectious diseases, such as bovine tuberculosis and corridor disease. Large-scale SNP discovery in this species would greatly facilitate further research into the area of host genetics and disease susceptibility, as well as provide a wealth of sequence information for other conservation and genomics studies. We sequenced pools of Cape buffalo DNA from a total of 9 animals, on an ABI SOLiD4 sequencer. The resulting short reads were mapped to the UMD3.1 Bos taurus genome assembly using both BWA and Bowtie software packages. A mean depth of 2.7× coverage over the mapped regions was obtained. Btau4 gene annotation was added to all SNPs identified within gene regions. Bowtie and BWA identified a maximum of 2,222,665 and 276,847 SNPs within the buffalo respectively, depending on analysis method. A panel of 173 SNPs was validated by fluorescent genotyping in 87 individuals. 27 SNPs failed to amplify, and of the remaining 146 SNPs, 43-54% of the Bowtie SNPs and 57-58% of the BWA SNPs were confirmed as polymorphic. dN/dS ratios found no evidence of positive selection, and although there were genes that appeared to be under negative selection, these were more likely to be slowly evolving house-keeping genes. © 2012 le Roex et al.
AB - The African buffalo, Syncerus caffer, is one of the most abundant and ecologically important species of megafauna in the savannah ecosystem. It is an important prey species, as well as a host for a vast array of nematodes, pathogens and infectious diseases, such as bovine tuberculosis and corridor disease. Large-scale SNP discovery in this species would greatly facilitate further research into the area of host genetics and disease susceptibility, as well as provide a wealth of sequence information for other conservation and genomics studies. We sequenced pools of Cape buffalo DNA from a total of 9 animals, on an ABI SOLiD4 sequencer. The resulting short reads were mapped to the UMD3.1 Bos taurus genome assembly using both BWA and Bowtie software packages. A mean depth of 2.7× coverage over the mapped regions was obtained. Btau4 gene annotation was added to all SNPs identified within gene regions. Bowtie and BWA identified a maximum of 2,222,665 and 276,847 SNPs within the buffalo respectively, depending on analysis method. A panel of 173 SNPs was validated by fluorescent genotyping in 87 individuals. 27 SNPs failed to amplify, and of the remaining 146 SNPs, 43-54% of the Bowtie SNPs and 57-58% of the BWA SNPs were confirmed as polymorphic. dN/dS ratios found no evidence of positive selection, and although there were genes that appeared to be under negative selection, these were more likely to be slowly evolving house-keeping genes. © 2012 le Roex et al.
U2 - 10.1371/journal.pone.0048792
DO - 10.1371/journal.pone.0048792
M3 - Article
C2 - 23144973
VL - 7
JO - PLoS ONE
JF - PLoS ONE
IS - 11
M1 - e48792
ER -