Numerical and experimental investigation of tandem wing flyers

Thomas Lambert*, Nicolas Warbecq, Patrick Hendrick, Robert Nudds, Thomas Andrianne, Grigorios Dimitriadis

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

Abstract

The recent focus on micro-UAV systems and bio-inspired drones has generated interest in tandem wing applications. Dragonfly-based configurations are of significance for very low Reynolds numbers; for larger drones, Microraptor-based geometries could prove to be efficient. The present study of tandem wing flyers aims at understanding the basic principles governing the aerodynamic properties of tandem wings in close proximity. The analysis includes both numerical simulations by means of the Unsteady Vortex Lattice Method and wind tunnel experimentation applied to generic rectangular wing geometries. Preliminary conclusions include the facts that increasing the rear wing’s angle of attack results in a bigger increase in lift than increasing the front wing’s angle of attack. The dihedral angles of the two wings also seem to have significant impact on the lift, some configurations leading to an increase in lift coefficient of up to 25%. The insight provided by the results will be used in the future to test and validate different flight configurations for the Microraptor and, hopefully, to shed some light on its preferred in-flight configuration and its flight capabilities.

Original languageEnglish
Title of host publicationAIAA Scitech 2019 Forum
PublisherAmerican Institute of Aeronautics and Astronautics
ISBN (Print)9781624105784
DOIs
Publication statusPublished - 2019
EventAIAA Scitech Forum, 2019 - San Diego, United States
Duration: 7 Jan 201911 Jan 2019

Publication series

NameAIAA Scitech 2019 Forum

Conference

ConferenceAIAA Scitech Forum, 2019
Country/TerritoryUnited States
CitySan Diego
Period7/01/1911/01/19

Fingerprint

Dive into the research topics of 'Numerical and experimental investigation of tandem wing flyers'. Together they form a unique fingerprint.

Cite this