OH and HO2 chemistry during NAMBLEX: roles of oxygenates, halogen oxides and heterogeneous uptake

R Sommariva, W J Bloss, N Brough, N Carslaw, M Flynn, A L Haggerstone, D E Heard, J R Hopkins, J D Lee, A C Lewis, G McFiggans, P S Monks, S A Penkett, M J Pilling, J M Plane, K A Read, A Saiz-Lopez, A R Rickard, P I Williams

    Research output: Contribution to journalArticlepeer-review

    68 Downloads (Pure)


    Several zero-dimensional box-models with different levels of chemical complexity, based on the Master Chemical Mechanism (MCM), have been used to study the chemistry of OH and HO2 in a coastal environment in the Northern Hemisphere. The models were constrained to and compared with measurements made during the NAMBLEX campaign ( Mace Head, Ireland) in summer 2002. The base models, which were constrained to measured CO, CH4 and NMHCs, were able to reproduce [ OH] within 25%, but overestimated [HO2] by about a factor of 2. Agreement was improved when the models were constrained to oxygenated compounds ( acetaldehyde, methanol and acetone), highlighting their importance for the radical budget. When the models were constrained to measured halogen monoxides (IO, BrO) and used a more detailed, measurements-based, treatment to describe the heterogeneous uptake, modelled [OH] increased by up to 15% and [HO2] decreased by up to 30%. The actual impact of halogen monoxides on the modelled concentrations of HOx was dependant on the uptake coefficients used for HOI, HOBr and HO2. Better agreement, within the combined uncertainties of the measurements and of the model, was achieved when using high uptake coefficients for HO2 and HOI (gamma(HO2)= 1, gamma(HOI)= 0(6). A rate of production and destruction analysis of the models allowed a detailed study of OH and HO2 chemistry under the conditions encountered during NAMBLEX, showing the importance of oxygenates and of XO ( where X=I, Br) as coreactants for OH and HO2 and of HOX photolysis as a source for OH.
    Original languageEnglish
    Pages (from-to)1135-1153
    Number of pages19
    JournalAtmospheric Chemistry and Physics
    Publication statusPublished - 2006


    • marine boundary-layer
    • volatile organic-compounds
    • atmospheric photolysis frequencies
    • master chemical mechanism
    • absorption cross-sections
    • mcm v3 part
    • tropospheric degradation
    • mace head
    • field-measurements
    • aerosol-particles


    Dive into the research topics of 'OH and HO2 chemistry during NAMBLEX: roles of oxygenates, halogen oxides and heterogeneous uptake'. Together they form a unique fingerprint.

    Cite this