Abstract
Hitherto, all polydisperse spray models have been based on discretising the liquid flow field into groups of equally sized droplets. The authors have recently developed a spray model that captures the full polydisperse nature of the spray flow without using droplet size classes (Beck, 2000, Ph.D thesis, UMIST; Beck and Watkins, 2001, Proc. R. Soc. London A). The parameters used to describe the distribution of droplet sizes are the moments of the droplet size distribution function. Transport equations are written for the two moments which represent the liquid mass and surface area, and two more moments representing the sum of drop radii and droplet number are approximated via use of a presumed distribution function, which is allowed to vary in space and time. The velocities to be used in the two transport equations are obtained by defining moment-average quantities and constructing further transport equations for the relevant moment-average velocities. An equation for the energy of the liquid phase and standard gas phase equations, including a k-ε turbulence model, are also solved. All the equations are solved in an Eulerian framework using the finite-volume approach, and the phases are coupled through source terms. Effects such as interphase drag, droplet breakup, and droplet-droplet collisions are also captured through the use of source terms. The development of the submodels to describe these effects is the subject of this paper. All the source terms for the hydrodynamics of the spray are derived in this paper in terms of the four moments of the droplet size distribution in order to find the net effect on the whole spray flow field. The development of similar submodels to describe heat and mass transfer effects between the phases is the subject of a further paper (Beck and Watkins, 2001, J. Heat Fluid Flow). The model has been applied to a wide variety of different sprays, including high-pressure diesel sprays, wide-angle solid-cone water sprays, hollow-cone sprays, and evaporating sprays. The comparisons of the results with experimental data show that the model performs well. The interphase drag model, along with the model for the turbulent dispersion of the liquid, produces excellent agreement in the spray penetration results, and the moment-average velocity approach gives good radial distributions of droplet size, showing the capability of the model to predict polydisperse behaviour. Good submodel performance results in droplet breakup, collisions, and evaporation effects (see (Beck and Watkins, 2001, J. Heat Fluid Flow)) also being captured successfully. © 2002 Elsevier Science (USA).
Original language | English |
---|---|
Pages (from-to) | 586-621 |
Number of pages | 35 |
Journal | Journal of Computational Physics |
Volume | 182 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Nov 2002 |
Keywords
- Droplet size moments
- Modelling
- Sprays
- Submodels