TY - JOUR
T1 - On the efficacy and limitations of isolated carbonate platforms as “oceanic dipsticks” to reconstruct subsidence histories, a case study from the Paleogene to Neogene strata on Grand Cayman and Cayman Brac, B.W.I.
AU - McCormick, Cole A.
AU - Jones, Brian
PY - 2021/3/27
Y1 - 2021/3/27
N2 - Carbonate sedimentary successions that developed on isolated oceanic islands typically comprise a series of unconformity-bounded packages of strata that reflect eustatic sea level changes superimposed on local tectonic movements. Resolving the subsidence and/or uplift of these islands, which are often assumed to have simple tectonic histories, is challenging because the tectonic movements are commonly of similar magnitudes to the eustatic oscillations. The uncertainty associated with each of the components involved in the construction of subsidence diagrams (e.g., age constraints, decompaction, eustatic sea level curves, paleobathymetry), therefore, introduces significant error margins when assessing the tectonic histories of isolated carbonate platforms. By using two end-member subsidence diagrams for the Paleogene to Neogene successions on Grand Cayman and Cayman Brac, it can be shown that their subsidence rates were heterogeneous over time and that the evolution of these islands vary significantly even though they are situated in the same basin. Although these islands, located 150 km apart, were subject to uniform changes in eustatic sea level, they have different stratigraphic architectures owing to their independent tectonic histories. From the Oligocene to the late Pliocene, the tectonic histories of Grand Cayman and Cayman Brac were analogous, and they subsided at a rate of 5.6 to 9.9 m/Myr. From the late Pliocene to ~400 ka, however, northeast Cayman Brac was uplifted by 165 m and tilted with a rotational axis offshore from the southwest end of the island, whereas Grand Cayman was uplifted by ~10 m with no rotational component. The results of this study challenge the assumption that isolated carbonate platforms have simple tectonic histories, while exploring and highlighting the common problems that are encountered with the construction of subsidence diagrams.
AB - Carbonate sedimentary successions that developed on isolated oceanic islands typically comprise a series of unconformity-bounded packages of strata that reflect eustatic sea level changes superimposed on local tectonic movements. Resolving the subsidence and/or uplift of these islands, which are often assumed to have simple tectonic histories, is challenging because the tectonic movements are commonly of similar magnitudes to the eustatic oscillations. The uncertainty associated with each of the components involved in the construction of subsidence diagrams (e.g., age constraints, decompaction, eustatic sea level curves, paleobathymetry), therefore, introduces significant error margins when assessing the tectonic histories of isolated carbonate platforms. By using two end-member subsidence diagrams for the Paleogene to Neogene successions on Grand Cayman and Cayman Brac, it can be shown that their subsidence rates were heterogeneous over time and that the evolution of these islands vary significantly even though they are situated in the same basin. Although these islands, located 150 km apart, were subject to uniform changes in eustatic sea level, they have different stratigraphic architectures owing to their independent tectonic histories. From the Oligocene to the late Pliocene, the tectonic histories of Grand Cayman and Cayman Brac were analogous, and they subsided at a rate of 5.6 to 9.9 m/Myr. From the late Pliocene to ~400 ka, however, northeast Cayman Brac was uplifted by 165 m and tilted with a rotational axis offshore from the southwest end of the island, whereas Grand Cayman was uplifted by ~10 m with no rotational component. The results of this study challenge the assumption that isolated carbonate platforms have simple tectonic histories, while exploring and highlighting the common problems that are encountered with the construction of subsidence diagrams.
KW - Isolated carbonate platforms
KW - Subsidence history
KW - Facies analysis
KW - Subaerial unconformities
U2 - https://doi.org/10.1016/j.margeo.2021.106470
DO - https://doi.org/10.1016/j.margeo.2021.106470
M3 - Article
VL - 436
SP - 1
EP - 23
JO - Marine Geology
JF - Marine Geology
SN - 0025-3227
M1 - 106470
ER -