TY - JOUR
T1 - On the minimal modules for exceptional Lie algebras
T2 - Jordan blocks and stabilizers
AU - Stewart, David I.
N1 - Publisher Copyright:
© © The Author 2016.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Let be a simple simply connected exceptional algebraic group of type G2, F4, E6 or E7 over an algebraically closed field k of characteristic p > 0 with g = Lie(G). For each nilpotent orbit G · e of g, we list the Jordan blocks of the action of on the minimal induced module Vmin of g. We also establish when the centralizers Gν of vectors ν ∈ Vmin and stabilizers StabG〈ν〉 of 1-spaces 〈ν〉 are ⊂ Vmin smooth; that is, when dim Gν = dim gν or dim StabG〈ν〉 = dim Stabg〈ν〉.
AB - Let be a simple simply connected exceptional algebraic group of type G2, F4, E6 or E7 over an algebraically closed field k of characteristic p > 0 with g = Lie(G). For each nilpotent orbit G · e of g, we list the Jordan blocks of the action of on the minimal induced module Vmin of g. We also establish when the centralizers Gν of vectors ν ∈ Vmin and stabilizers StabG〈ν〉 of 1-spaces 〈ν〉 are ⊂ Vmin smooth; that is, when dim Gν = dim gν or dim StabG〈ν〉 = dim Stabg〈ν〉.
UR - http://www.scopus.com/inward/record.url?scp=84980329265&partnerID=8YFLogxK
U2 - 10.1112/S1461157016000103
DO - 10.1112/S1461157016000103
M3 - Article
AN - SCOPUS:84980329265
SN - 1461-1570
VL - 19
SP - 235
EP - 258
JO - LMS Journal of Computation and Mathematics
JF - LMS Journal of Computation and Mathematics
IS - 1
ER -