TY - JOUR
T1 - One Step Electrochemical Exfoliation of Natural Graphite Flakes into Graphene Oxide for Polybenzimidazole Composite Membranes Giving Enhanced Performance in High Temperature Fuel Cells
AU - Chen, Jianuo
AU - Perez-Page, Maria
AU - Ji, Zhaoqi
AU - Zhang, Zhe
AU - Guo, Zunmin
AU - Holmes, Stuart
PY - 2021/1/21
Y1 - 2021/1/21
N2 - In this work, a 3D-printed reactor was designed to enable natural graphite flakes to be used for electrochemical exfoliation to quickly obtain graphene oxide. Graphite foil as a typical raw material of electrochemical exfoliation was also exfoliated for comparison. Under the same conditions (10V, 1mol/L ammonium sulfate solution as electrolyte), the graphene products obtained by one-step electrochemical exfoliation using natural graphite flakes based on the reactor, have a significantly higher degree of oxidation than products obtained using graphite foil (the oxygen content is increased by 50.2%). In addition, the oxidation degree can be further increased by increasing the electrolyte concentration or reaction time. This design achieves one-step exfoliation using natural graphite flakes to obtain graphene oxide with tunable oxygen content in short time without using any strong oxidants or strong acids. The as-prepared electrochemically exfoliated graphene oxide (EGO) was used to prepare polybenzimidazole (PBI)/ graphene oxide (GO) composite membranes for high-temperature polymer electrolyte membrane fuel cells (HTPEMFC). The 0.5%, 1% and 2% EGO loadings in the PBI membrane increased the peak power density by 13.8%, 24.4 % and 29.2 %, respectively.
AB - In this work, a 3D-printed reactor was designed to enable natural graphite flakes to be used for electrochemical exfoliation to quickly obtain graphene oxide. Graphite foil as a typical raw material of electrochemical exfoliation was also exfoliated for comparison. Under the same conditions (10V, 1mol/L ammonium sulfate solution as electrolyte), the graphene products obtained by one-step electrochemical exfoliation using natural graphite flakes based on the reactor, have a significantly higher degree of oxidation than products obtained using graphite foil (the oxygen content is increased by 50.2%). In addition, the oxidation degree can be further increased by increasing the electrolyte concentration or reaction time. This design achieves one-step exfoliation using natural graphite flakes to obtain graphene oxide with tunable oxygen content in short time without using any strong oxidants or strong acids. The as-prepared electrochemically exfoliated graphene oxide (EGO) was used to prepare polybenzimidazole (PBI)/ graphene oxide (GO) composite membranes for high-temperature polymer electrolyte membrane fuel cells (HTPEMFC). The 0.5%, 1% and 2% EGO loadings in the PBI membrane increased the peak power density by 13.8%, 24.4 % and 29.2 %, respectively.
M3 - Article
SN - 0378-7753
JO - Journal of Power Sources
JF - Journal of Power Sources
ER -