TY - JOUR
T1 - Optimization-based Design of Crude Oil Distillation Units using Surrogate Column Models and a Support Vector Machine
AU - Ibrahim, Dauda
AU - Jobson, Megan
AU - Li, Jie
AU - Guillen-Gosalbez, Gonzalo
PY - 2018
Y1 - 2018
N2 - This paper presents a novel optimization-based approach for the design of heat-integrated crude oil distillation units, which are widely used in refineries. The methodology presented combines, within a unified framework, surrogate distillation column models based on artificial neural networks, feasibility constraints constructed using a support vector machine, and pinch analysis to maximize heat recovery, in order to optimize the distillation column configuration and its operating conditions. The inputs to the surrogate column model are given by the column structure and operating conditions, while the outputs are related to the column performance. The support vector machine classifier filters infeasible design alternatives from the search space, thus reducing computational time, and ultimately improves the quality of the final solution. The overall optimization problem takes the form of a mixed-integer nonlinear program, which is solved by a genetic algorithm that seeks the design and operating variables values that minimize the total annualized cost. The capabilities of the proposed approach are illustrated using an industrially–relevant case study. Numerical results show that promising design alternatives can be obtained using the proposed method. The approach can help engineers to design and operate petroleum refineries optimally, where these are expected to continue to play a major role in the energy mix for some years.
AB - This paper presents a novel optimization-based approach for the design of heat-integrated crude oil distillation units, which are widely used in refineries. The methodology presented combines, within a unified framework, surrogate distillation column models based on artificial neural networks, feasibility constraints constructed using a support vector machine, and pinch analysis to maximize heat recovery, in order to optimize the distillation column configuration and its operating conditions. The inputs to the surrogate column model are given by the column structure and operating conditions, while the outputs are related to the column performance. The support vector machine classifier filters infeasible design alternatives from the search space, thus reducing computational time, and ultimately improves the quality of the final solution. The overall optimization problem takes the form of a mixed-integer nonlinear program, which is solved by a genetic algorithm that seeks the design and operating variables values that minimize the total annualized cost. The capabilities of the proposed approach are illustrated using an industrially–relevant case study. Numerical results show that promising design alternatives can be obtained using the proposed method. The approach can help engineers to design and operate petroleum refineries optimally, where these are expected to continue to play a major role in the energy mix for some years.
KW - Process design
KW - atmospheric distillation unit
KW - Heat integration
KW - Genetic algorithm
KW - artificial neural network
U2 - 10.1016/j.cherd.2018.03.006
DO - 10.1016/j.cherd.2018.03.006
M3 - Article
SN - 0263-8762
JO - Chemical Engineering Research & Design
JF - Chemical Engineering Research & Design
ER -