Oxidative cyclodehydrogenation reaction for the design of extended 2D and 3D carbon nanostructures: A theoretical study

Marco Di Stefano, Fabrizia Negri, Paola Carbone, Klaus Müllen

    Research output: Contribution to journalArticlepeer-review


    We present a theoretical study on the main mechanistic features of the oxidative cyclodehydrogenation reaction of oligophenylene precursors affording the planar corresponding fully benzenoid, planar polycyclic aromatic hydrocarbons (BPAHs), molecular nanostructures of emerging interest in the field of nanotechnology. We firstly consider the transformation of o-terphenyl molecules, C18H14, into triphenylene, C18H 12. Then, our calculations are extended to the primary ring-closure processes promoted in hexaphenylbenzene molecules, C42H30, via the same reactive approach which is experimentally known to yield hexa-peri-hexabenzocoronene, C42H18, as final product. To predict reliable reaction mechanisms, the critical points on the potential energy surfaces of interest are studied by using density functional theory with the hybrid functional B3LYP and the 3-21G basis set. Particular attention is paid to the role that radical cation intermediates may play in this reaction. The study suggests a step by step mechanism in which the new C-C bonds are formed and dehydrogenated one at a time until the final fully benzenoid product is obtained. The conclusions drawn from these preliminary investigations form the basis for a more thorough understanding of the synthetic strategy leading to much larger and complex conjugated carbon nanostructures. © 2005 Elsevier B.V. All rights reserved.
    Original languageEnglish
    Pages (from-to)85-99
    Number of pages14
    JournalChemical Physics
    Issue number1-3
    Publication statusPublished - 18 Jul 2005


    • Ab initio calculations
    • Carbon nanostructures
    • Density functional theory
    • Oxidative cyclodehydrogenation reaction
    • Polycyclic aromatic hydrocarbons


    Dive into the research topics of 'Oxidative cyclodehydrogenation reaction for the design of extended 2D and 3D carbon nanostructures: A theoretical study'. Together they form a unique fingerprint.

    Cite this