Oxygen enhanced optoacoustic tomography (OE-OT) reveals vascular dynamics in murine models of prostate cancer

Michal Tomaszewski, Isabel Quiros Gonzalez, James O'Connor, Oshaani Abeyakoon, Geoffrey Parker, Kaye Williams, Fiona J. Gilbert, Sarah E. Bohndiek

Research output: Contribution to journalArticlepeer-review

Abstract

Poor oxygenation of solid tumours has been linked with resistance to chemo-­ and radio-­therapy and poor patient outcomes, hence non-­invasive imaging of oxygen supply and demand in tumours could improve disease staging and therapeutic monitoring. Optoacoustic tomography (OT) is an emerging clinical imaging modality that provides static images of endogenous haemoglobin concentration and oxygenation. Here, we demonstrate oxygen enhanced (OE)-­OT, exploiting an oxygen gas challenge to visualise the spatiotemporal heterogeneity of tumour vascular function. We show that tracking oxygenation dynamics using OE-­OT reveals significant differences between two prostate cancer models in nude mice with markedly different vascular function (PC3 & LNCaP), which appear identical in static OT. LNCaP tumours showed a spatially heterogeneous response within and between tumours, with a substantial but slow response to the gas challenge, aligned with ex vivo analysis, which revealed a generally perfused and viable tumour with marked areas of haemorrhage. PC3 tumours had a lower fraction of responding pixels compared to LNCaP with a high disparity between rim and core response. While the PC3 core showed little or no dynamic response, the rim showed a rapid change, consistent with our ex vivo findings of hypoxic and necrotic core tissue surrounded by a rim of mature and perfused vasculature. OE-­OT metrics are shown to be highly repeatable and correlate directly on a per-­tumour basis to tumour vessel function assessed ex vivo. OE-­OT provides a non-­invasive approach to reveal the complex dynamics of tumour vessel perfusion, permeability and vasoactivity in real time. Our findings indicate that OE-­OT holds potential for application in prostate cancer patients, to improve delineation of aggressive and indolent disease as well as in patient stratification for chemo-­and radio-­therapy.
Original languageEnglish
Pages (from-to)2900-2913
JournalTheranostics
Volume7
Issue number11
Early online date8 Jul 2017
DOIs
Publication statusPublished - 8 Jul 2017

Fingerprint

Dive into the research topics of 'Oxygen enhanced optoacoustic tomography (OE-OT) reveals vascular dynamics in murine models of prostate cancer'. Together they form a unique fingerprint.

Cite this