Periodic learning of B-spline models for output PDF control: Application to MWD control

H. Wang, J. F. Zhang, H. Yue

    Research output: Contribution to conferenceOther

    Abstract

    Periodic learning of B-spline basis functions model for the output probability density function (PDF) control of non-Gaussian systems is studied in this paper using the recursive least square algorithm. Within each control interval, the basis functions are fixed and the control input design is performed that controls the shape of the output PDFs. However, between each control interval, periodic learning techniques are used to tune the shape of the basis functions. This has been shown to be able to improve the accuracy of the B-spline approximation model. As such, the overall B-spline model of the output PDFs becomes a dual-model related to both time and space variables. The algorithm has been applied to a simulation study of the molecular weight distribution (MWD) control of a styrene polymerization process, leading to some interesting results. ©2005 AACC.
    Original languageEnglish
    Pages955-960
    Number of pages5
    Publication statusPublished - 2005
    Event2005 American Control Conference, ACC - Portland, OR
    Duration: 1 Jul 2005 → …

    Conference

    Conference2005 American Control Conference, ACC
    CityPortland, OR
    Period1/07/05 → …

    Fingerprint

    Dive into the research topics of 'Periodic learning of B-spline models for output PDF control: Application to MWD control'. Together they form a unique fingerprint.

    Cite this