Abstract
Heart failure (HF) is commonly associated with reduced cardiac output and an increased risk of atrial arrhythmias particularly during β-adrenergic stimulation. The aim of the present study was to determine how HF alters systolic Ca(2+) and the response to β-adrenergic (β-AR) stimulation in atrial myocytes. HF was induced in sheep by ventricular tachypacing and changes in intracellular Ca(2+) concentration studied in single left atrial myocytes under voltage and current clamp conditions. The following were all reduced in HF atrial myocytes; Ca(2+) transient amplitude (by 46% in current clamped and 28% in voltage clamped cells), SR dependent rate of Ca(2+) removal (kSR, by 32%), L-type Ca(2+) current density (by 36%) and action potential duration (APD90 by 22%). However, in HF SR Ca(2+) content was increased (by 19%) when measured under voltage-clamp stimulation. Inhibiting the L-type Ca(2+) current (ICa-L) in control cells reproduced both the decrease in Ca(2+) transient amplitude and increase of SR Ca(2+) content observed in voltage-clamped HF cells. During β-AR stimulation Ca(2+) transient amplitude was the same in control and HF cells. However, ICa-L remained less in HF than control cells whilst SR Ca(2+) content was highest in HF cells during β-AR stimulation. The decrease in ICa-L that occurs in HF atrial myocytes appears to underpin the decreased Ca(2+) transient amplitude and increased SR Ca(2+) content observed in voltage-clamped cells.
Original language | English |
---|---|
Pages (from-to) | 169-179 |
Number of pages | 10 |
Journal | Journal of molecular and cellular cardiology |
Volume | 79 |
DOIs | |
Publication status | Published - Feb 2015 |
Keywords
- Atria
- Calcium
- Heart failure
- Sarcoplasmic reticulum