Phase limitations of multipliers for nonlinearities with monotone bounds

William H. Heath, Joaquin Carrasco

Research output: Contribution to journalArticlepeer-review

Abstract

We consider Lurye systems, whose nonlinear operator is characterized by a nonlinearity that is bounded above and below by monotone functions. Absolute stability can be established using a subclass of the O’Shea-Zames-Falb multipliers. We develop phase conditions for both continuous-time and discrete time systems under which there can be no such suitable multiplier for the transfer function of a given plant. In discrete time the condition can be tested via a linear program, while in continuous time it can be tested efficiently by exploiting convex structure. Results provide useful insight into the dynamic behaviour of such systems and we illustrate the phase limitations with examples from the literature.
Original languageEnglish
JournalIEEE Transactions on Automatic Control
Publication statusAccepted/In press - 12 Oct 2024

Keywords

  • Absolute stability
  • Lurye (or Lur’e) systems
  • multiplier theory
  • frequency domain

Fingerprint

Dive into the research topics of 'Phase limitations of multipliers for nonlinearities with monotone bounds'. Together they form a unique fingerprint.

Cite this