Physical and geometric determinants of transport in feto-placental microvascular networks

Alexander Erlich, Philip Pearce, Romina Plitman Mayo, Oliver Jensen, Igor Chernyavsky

    Research output: Contribution to journalArticlepeer-review


    Across mammalian species, solute exchange takes place in complex microvascular networks. In the human placenta, the primary exchange units are terminal villi that contain disordered networks of fetal capillaries and are surrounded externally by maternal blood. We show how the irregular internal structure of a terminal villus determines its exchange capacity for diverse solutes. Distilling geometric features into three parameters, obtained from image analysis and computational fluid dynamics,we capture archetypal features of the structure-function relationship of terminal villi using a simple algebraic approximation, revealing transitions between flow- and diffusionlimited transport at vessel and network levels. Our theory accommodates countercurrent effects, incorporates nonlinear blood rheology, and offers an efficient method for testing network robustness. Our results show how physical estimates of solute transport, based on carefully defined geometrical statistics, provide a viable method for linking placental structure and function and offer a framework for assessing transport in other microvascular systems.

    Original languageEnglish
    Article numbereaav6326
    JournalScience Advances
    Issue number4
    Early online date17 Apr 2019
    Publication statusPublished - 17 Apr 2019


    Dive into the research topics of 'Physical and geometric determinants of transport in feto-placental microvascular networks'. Together they form a unique fingerprint.

    Cite this