Plasma-based particle sources

M. Fuchs, G. Andonian, O. Apsimon, M. Büscher, M.c. Downer, D. Filippetto, A. Lehrach, C.b. Schroeder, B.a. Shadwick, A.g.r. Thomas, N. Vafaei-Najafabadi, G. Xia

Research output: Contribution to journalArticlepeer-review


High-brightness particle beams generated by advanced accelerator concepts have the potential to become an essential part of future accelerator technology. In particular, high-gradient accelerators can generate and rapidly accelerate particle beams to relativistic energies. The rapid acceleration and strong confining fields can minimize irreversible detrimental effects to the beam brightness that occur at low beam energies, such as emittance growth or pulse elongation caused by space charge forces. Due to the high accelerating gradients, these novel accelerators are also significantly more compact than conventional technology. Advanced accelerators can be extremely variable and are capable of generating particle beams with vastly different properties using the same driver and setup with only modest changes to the interaction parameters. So far, efforts have mainly been focused on the generation of electron beams, but there are concepts to extend the sources to generate spin-polarized electron beams or positron beams.

The beam parameters of these particle sources are largely determined by the injection and subsequent acceleration processes. Although, over the last decade there has been significant progress, the sources are still lacking a sufficiently high 6-dimensional (D) phase-space density that includes small transverse emittance, small energy spread and high charge, and operation at high repetition rate. This is required for future particle colliders with a sufficiently high luminosity or for more near-term applications, such as enabling the operation of free-electron lasers (FELs) in the X-ray regime. Major research and development efforts are required to address these limitations in order to realize these approaches for a front-end injector for a future collider or next-generation light sources. In particular, this includes methods to control and manipulate the phase-space and spin degrees-of-freedom of ultrashort plasma-based electron bunches with high accuracy, and methods that increase efficiency and repetition rate. These efforts also include the development of high-resolution diagnostics, such as full 6D phase-space measurements, beam polarimetry and high-fidelity simulation tools.

A further increase in beam luminosity can be achieve through emittance damping. Emittance cooling via the emission of synchrotron radiation using current technology requires kilometer-scale damping rings. For future colliders, the damping rings might be replaced by a substantially more compact plasma-based approach. Here, plasma wigglers with significantly stronger magnetic fields are used instead of permanent-magnet based wigglers to achieve similar damping performance but over a two orders of magnitude reduced length.
Original languageEnglish
Article numberT01004
JournalJournal of Instrumentation
Issue number01
Publication statusPublished - 17 Jan 2024


  • Wake-field acceleration (laser-driven, electron-driven)
  • Accelerator Subsystems and Technologies


Dive into the research topics of 'Plasma-based particle sources'. Together they form a unique fingerprint.

Cite this