Abstract
Original language | English |
---|---|
Pages (from-to) | 340-344 |
Number of pages | 5 |
Journal | Clinical and Experimental Hypertension |
Volume | 37 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2015 |
Keywords
- Pulmonary hypertension
- Right ventricular function
- Vascular endothelial growth factor
- vasculotropin
- biological marker
- vasculotropin A
- adult
- Article
- breath analysis
- cardiovascular parameters
- clinical article
- comparative study
- controlled study
- essential hypertension
- exhaled breath condensate
- female
- heart protection
- heart right ventricle function
- heart right ventricular thickness
- human
- male
- non invasive procedure
- pulmonary hypertension
- tricuspid annular plane systolic excursion
- blood
- Doppler echocardiography
- echography
- follow up
- heart ventricle
- lung wedge pressure
- middle aged
- pathophysiology
- physiology
- retrospective study
- Biomarkers
- Echocardiography, Doppler
- Female
- Follow-Up Studies
- Heart Ventricles
- Humans
- Hypertension, Pulmonary
- Male
- Middle Aged
- Pulmonary Wedge Pressure
- Retrospective Studies
- Vascular Endothelial Growth Factor A
- Ventricular Function, Right
Access to Document
Fingerprint
Dive into the research topics of 'Plasma VEGF levels and their relation to right ventricular function in pulmonary hypertension'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Clinical and Experimental Hypertension, Vol. 37, No. 4, 2015, p. 340-344.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Plasma VEGF levels and their relation to right ventricular function in pulmonary hypertension
AU - Pako, J.
AU - Bikov, A.
AU - Karlocai, K.
AU - Csosza, G.
AU - Kunos, L.
AU - Losonczy, G.
AU - Horvath, I.
N1 - Cited By :2 Export Date: 31 October 2018 CODEN: CEHYE Correspondence Address: Bikov, A.; Department of Pulmonology, Semmelweis University, Diós árok 1/C, Hungary; email: [email protected] Chemicals/CAS: vasculotropin, 127464-60-2; vasculotropin A, 489395-96-2; Biomarkers; Vascular Endothelial Growth Factor A Funding details: OTKA 68808, OTKA, Országos Tudományos Kutatási Alapprogramok Funding text: The study was supported by the Hungarian Scientific Research Fund (OTKA 68808) and Hungarian Respiratory Society research grant (to Andras Bikov). References: Benisty, J.I., McLaughlin, V.V., Landzberg, M.J., Elevated basic fibroblast growth factor levels in patients with pulmonary arterial hypertension (2004) Chest, 126, pp. 1255-1261; Nickel, N., Kempf, T., Tapken, H., Growth differentiation factor-15 in idiopathic pulmonary arterial hypertension (2008) Am J Respir Crit Care Med, 178, pp. 534-541; Selimovic, N., Bergh, C.H., Andersson, B., Growth factors and interleukin-6 across the lung circulation in pulmonary hypertension (2009) Eur Respir J, 34, pp. 662-668; Kumpers, P., Nickel, N., Lukasz, A., Circulating angiopoietins in idiopathic pulmonary arterial hypertension (2010) Eur Heart J, 31, pp. 2291-2300; Galie, N., Hoeper, M.M., Humbert, M., Guidelines for the diagnosis and treatment of pulmonary hypertension (2009) Eur Respir J, 34, pp. 1219-1263; Tanaseanu, C., Tudor, S., Tamsulea, I., Vascular endothelial growth factor, lipoporotein-associated phospholipase A2, sPselectin and antiphospholipid antibodies, biological markers with prognostic value in pulmonary hypertension associated with chronic obstructive pulmonary disease and systemic lupus erithematosus (2007) Eur J Med Res, 12, pp. 145-151; Smadja, D.M., Mauge, L., Sanchez, O., Distinct patterns of circulating endothelial cells in pulmonary hypertension (2010) Eur Respir J, 36, pp. 1284-1293; Jonigk, D., Golpon, H., Bockmeyer, C.L., Plexiform lesions in pulmonary arterial hypertension composition, architecture, and microenvironment (2011) Am J Pathol, 179, pp. 167-179; Tuder, R.M., Chacon, M., Alger, L., Expression of angiogenesisrelated molecules in plexiform lesions in severe pulmonary hypertension: Evidence for a process of disordered angiogenesis (2001) J Pathol, 195, pp. 367-374; Nadeau, S., Baribeau, J., Janvier, A., Perreault, T., Changes in expression of vascular endothelial growth factor and its receptors in neonatal hypoxia-induced pulmonary hypertension (2005) Pediatr Res, 58, pp. 199-205; Tsurumi, Y., Murohara, T., Krasinski, K., Reciprocal relation between VEGF and NO in the regulation of endothelial integrity (1997) Nat Med, 3, pp. 879-886; Wanstall, J.C., Gambino, A., Jeffery, T.K., Vascular endothelial growth factor-B-deficient mice show impaired development of hypoxic pulmonary hypertension (2002) Cardiovasc Res, 55, pp. 361-368; Yigitaslan, S., Sirmagul, B., Relation of bosentan, iloprost, and sildenafil with growth factor levels in monocrotaline-induced pulmonary hypertension (2012) Clin Exp Hypertens, 34, pp. 222-229; Campbell, A.I., Zhao, Y., Sandhu, R., Stewart, D.J., Cell-based gene transfer of vascular endothelial growth factor attenuates monocrotaline-induced pulmonary hypertension (2001) Circulation, 104, pp. 2242-2248; Partovian, C., Adnot, S., Raffestin, B., Adenovirus-mediated lung vascular endothelial growth factor overexpression protects against hypoxic pulmonary hypertension in rats (2000) Am J Respir Cell Mol Biol, 23, pp. 762-771; Duncan, M., Wagner, B.D., Murray, K., Circulating cytokines and growth factors in pediatric pulmonary hypertension (2012) Mediators Inflamm, 2012, p. 143428; Forfia, P.R., Fisher, M.R., Mathai, S.C., Tricuspid annular displacement predicts survival in pulmonary hypertension (2006) Am J Respir Crit Care Med, 174, pp. 1034-1041; Le Cras, T.D., Markham, N.E., Tuder, R.M., Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure (2002) Am J Physiol Lung Cell Mol Physiol, 283, pp. L555-L562; Ciuclan, L., Bonneau, O., Hussey, M., A novel murine model of severe pulmonary arterial hypertension (2011) Am J Respir Crit Care Med, 184, pp. 1171-1182; Horvath, I., Hunt, J., Barnes, P.J., Exhaled breath condensate: Methodological recommendations and unresolved questions (2005) Eur Respir J, 26, pp. 523-548; Leung, T.F., Wong, G.W., Ko, F.W., Analysis of growth factors and inflammatory cytokines in exhaled breath condensate from asthmatic children (2005) Int Arch Allergy Immunol, 137, pp. 66-72; Dalaveris, E., Kerenidi, T., Katsabeki-Katsafli, A., VEGF, TNFalpha and 8-isoprostane levels in exhaled breath condensate and serum of patients with lung cancer (2009) Lung Cancer, 64, pp. 219-225; Gessner, C., Rechner, B., Hammerschmidt, S., Angiogenic markers in breath condensate identify non-small cell lung cancer (2010) Lung Cancer, 68, pp. 177-184; Colombo, C., Faelli, N., Tirelli, A.S., Analysis of inflammatory and immune response biomarkers in sputum and exhaled breath condensate by a multi-parametric biochip array in cystic fibrosis (2011) Int J Immunopathol Pharmacol, 24, pp. 423-432; Bikov, A., Bohacs, A., Eszes, N., Circulating and exhaled vascular endothelial growth factor in asthmatic pregnancy (2012) Biomarkers, 17, pp. 648-654; Kastelijn, E.A., Rijkers, G.T., Van Moorsel, C.H., Systemic and exhaled cytokine and chemokine profiles are associated with the development of bronchiolitis obliterans syndrome (2010) J Heart Lung Transplant, 29, pp. 997-1008; Rudski, L.G., Lai, W.W., Afilalo, J., Guidelines for the echocardiographic assessment of the right heart in adults: A report from the American society of echocardiography endorsed by the European association of echocardiography, a registered branch of the European society of cardiology, and the Canadian society of echocardiography (2010) J Am Soc Echocardiogr, 23, pp. 685-713. , quiz 86-8; Faul, F., Erdfelder, E., Buchner, A., Lang, A.G., Statistical power analyses using G∗Power 3.1: Tests for correlation and regression analyses (2009) Behav Res Methods, 41, pp. 1149-1160; Mura, M., Dos Santos, C.C., Stewart, D., Liu, M., Vascular endothelial growth factor and related molecules in acute lung injury (2004) J Appl Physiol, 97, pp. 1605-1617. , (1985); Voelkel, N.F., Vandivier, R.W., Tuder, R.M., Vascular endothelial growth factor in the lung (2006) Am J Physiol Lung Cell Mol Physiol, 290, pp. L209-L221; Voelkel, N.F., Cool, C., Taraceviene-Stewart, L., Janus face of vascular endothelial growth factor: The obligatory survival factor for lung vascular endothelium controls precapillary artery remodeling in severe pulmonary hypertension (2002) Crit Care Med, 30, pp. S251-S256; Lahm, T., Crisostomo, P.R., Markel, T.A., The critical role of vascular endothelial growth factor in pulmonary vascular remodeling after lung injury (2007) Shock, 28, pp. 4-14; Tuder, R.M., Yun, J.H., Vascular endothelial growth factor of the lung: Friend or foe (2008) Curr Opin Pharmacol, 8, pp. 255-260; Partovian, C., Adnot, S., Eddahibi, S., Heart and lung VEGF mRNA expression in rats with monocrotaline- or hypoxia-induced pulmonary hypertension (1998) Am J Physiol, 275, pp. H1948-H1956; Howard, L.S., Prognostic factors in pulmonary arterial hypertension: Assessing the course of the disease (2011) Eur Respir Rev, 20, pp. 236-242; Santos, S., Peinado, V.I., Ramirez, J., Enhanced expression of vascular endothelial growth factor in pulmonary arteries of smokers and patients with moderate chronic obstructive pulmonary disease (2003) Am J Respir Crit Care Med, 167, pp. 1250-1256
PY - 2015
Y1 - 2015
N2 - A protective role of vascular endothelial growth factor (VEGF) on right heart function has been reported only in animal studies of pulmonary hypertension. Twenty patients with idiopathic pulmonary hypertension and fifteen healthy volunteers were involved. Plasma VEGF levels were compared to right heart parameters. Plasma VEGF levels tended to be higher in patients (82/0-345/pg/ml) than in controls (48/0-141/pg/ml, p=0.08) with a significant correlation between VEGF concentration and tricuspid annular plane systolic excursion (TAPSE; p=0.03, r=0.48). This is the first study to report a positive association between elevated plasma VEGF levels and right heart function in humans. © 2015 Informa Healthcare USA, Inc.
AB - A protective role of vascular endothelial growth factor (VEGF) on right heart function has been reported only in animal studies of pulmonary hypertension. Twenty patients with idiopathic pulmonary hypertension and fifteen healthy volunteers were involved. Plasma VEGF levels were compared to right heart parameters. Plasma VEGF levels tended to be higher in patients (82/0-345/pg/ml) than in controls (48/0-141/pg/ml, p=0.08) with a significant correlation between VEGF concentration and tricuspid annular plane systolic excursion (TAPSE; p=0.03, r=0.48). This is the first study to report a positive association between elevated plasma VEGF levels and right heart function in humans. © 2015 Informa Healthcare USA, Inc.
KW - Pulmonary hypertension
KW - Right ventricular function
KW - Vascular endothelial growth factor
KW - vasculotropin
KW - biological marker
KW - vasculotropin A
KW - adult
KW - Article
KW - breath analysis
KW - cardiovascular parameters
KW - clinical article
KW - comparative study
KW - controlled study
KW - essential hypertension
KW - exhaled breath condensate
KW - female
KW - heart protection
KW - heart right ventricle function
KW - heart right ventricular thickness
KW - human
KW - male
KW - non invasive procedure
KW - pulmonary hypertension
KW - tricuspid annular plane systolic excursion
KW - blood
KW - Doppler echocardiography
KW - echography
KW - follow up
KW - heart ventricle
KW - lung wedge pressure
KW - middle aged
KW - pathophysiology
KW - physiology
KW - retrospective study
KW - Biomarkers
KW - Echocardiography, Doppler
KW - Female
KW - Follow-Up Studies
KW - Heart Ventricles
KW - Humans
KW - Hypertension, Pulmonary
KW - Male
KW - Middle Aged
KW - Pulmonary Wedge Pressure
KW - Retrospective Studies
KW - Vascular Endothelial Growth Factor A
KW - Ventricular Function, Right
U2 - 10.3109/10641963.2014.972561
DO - 10.3109/10641963.2014.972561
M3 - Article
SN - 1064-1963
VL - 37
SP - 340
EP - 344
JO - Clinical and Experimental Hypertension
JF - Clinical and Experimental Hypertension
IS - 4
ER -