pMineR: An innovative R library for performing process mining in medicine

Roberto Gatta*, Jacopo Lenkowicz, Mauro Vallati, Eric Rojas, Andrea Damiani, Lucia Sacchi, Berardino De Bari, Arianna Dagliati, Carlos Fernandez-Llatas, Matteo Montesi, Antonio Marchetti, Maurizio Castellano, Vincenzo Valentini

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

Abstract

Process Mining is an emerging discipline investigating tasks related with the automated identification of process models, given realworld data (Process Discovery). The analysis of such models can provide useful insights to domain experts. In addition, models of processes can be used to test if a given process complies (Conformance Checking) with specifications. For these capabilities, Process Mining is gaining importance and attention in healthcare. In this paper we introduce pMineR, an R library specifically designed for performing Process Mining in the medical domain, and supporting human experts by presenting processes in a human-readable way.

Original languageEnglish
Title of host publicationArtificial Intelligence in Medicine - 16th Conference on Artificial Intelligence in Medicine, AIME 2017, Proceedings
EditorsAnnette [surname]ten Teije, Christian Popow, Lucia Sacchi, John H. Holmes
PublisherSpringer Nature
Pages351-355
Number of pages5
ISBN (Print)9783319597577
DOIs
Publication statusPublished - 1 Jan 2017
Event16th Conference on Artificial Intelligence in Medicine, AIME 2017 - Vienna, Austria
Duration: 21 Jun 201724 Jun 2017

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10259 LNAI
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference16th Conference on Artificial Intelligence in Medicine, AIME 2017
Country/TerritoryAustria
CityVienna
Period21/06/1724/06/17

Keywords

  • Decision support system
  • Process mining
  • R

Fingerprint

Dive into the research topics of 'pMineR: An innovative R library for performing process mining in medicine'. Together they form a unique fingerprint.

Cite this