Abstract
This paper proves an equality in law between the invariant measure of a reflected system of Brownian motions and a vector of point-to-line last passage percolation times in a discrete random environment. A consequence describes the distribution of the all-time supremum of Dyson Brownian motion with drift. A finite temperature version relates the point-to-line partition functions of two directed polymers, with an inverse-gamma and a Brownian environment, and generalises Dufresne’s identity. Our proof introduces an interacting system of Brownian motions with an invariant measure given by a field of point-to-line log partition functions for the log-gamma polymer.
Original language | English |
---|---|
Pages (from-to) | 121-171 |
Number of pages | 51 |
Journal | Probability Theory and Related Fields |
Publication status | Published - 17 Apr 2020 |