Abstract
Population bottlenecks are assumed to play a key role in the maintenance of social traits in microbes. Ecological parameters such as colonisation or disturbances can favour cooperation through causing population bottlenecks that enhance genetic structuring (relatedness). However, the size of the population bottleneck is likely to play a crucial role in determining the success of cooperation. Relatedness is likely to increase with decreasing bottleneck size thus favouring the evolution of cooperation. I used an experimental evolution approach to test this prediction with biofilm formation by the bacterium Pseudomonas fluorescens as the cooperative trait. Replicate populations were exposed to disturbance events every four days under one of six population bottleneck treatments (from 103 to 108 bacterial cells). In line with predictions, the frequency of evolved cheats within the populations increased with increasing bottleneck slze. This result highlights the importance of ecologically mediated population bottlenecks in the maintenance of social traits in microbes.
Original language | English |
---|---|
Article number | e634 |
Journal | PLoS ONE |
Volume | 2 |
Issue number | 7 |
DOIs | |
Publication status | Published - 25 Jul 2007 |
Keywords
- Biofilm
- Bacteria
- Quorum sensing