Porous Bioactive Nanofibers via Cryogenic Solution Blow Spinning and Their Formation into 3D Macroporous Scaffolds

Eudes Leonnan G. Medeiros, Ana Letícia Braz, Isaque Jeronimo Porto, Angelika Menner, Alexander Bismarck, Aldo R. Boccaccini, William C. Lepry, Showan N. Nazhat, Eliton S. Medeiros, Jonny Blaker

    Research output: Contribution to journalArticlepeer-review

    334 Downloads (Pure)

    Abstract

    There is increasing focus on the development of bioactive scaffolds for tissue engineering and regenerative medicine that mimic the native nanofibrillar extracellular matrix. Solution blow spinning (SBS) is a rapid, simple technique that produces nanofibers with open fiber networks for enhanced cell infiltration. In this work, highly porous bioactive fibers were produced by combining SBS with thermally induced phase separation. Fibers composed of poly(d,l-lactide) (PLA) and dimethyl carbonate were sprayed directly into a cryogenic environment and subsequently lyophilized, rendering them highly porous. The surface areas of the porous fibers were an order of magnitude higher in comparison with smooth control fibers of the same diameter (43.5 m2·g–1 for porous fibers produced from 15% w/v PLA in dimethyl carbonate) and exhibited elongated surface pores. Macroporous scaffolds were produced by spraying water droplets simultaneously with fiber formation, creating a network of fibers and ice microspheres, which act as in situ macroporosifiers. Subsequent lyophilization resulted in three-dimensional (3D) scaffolds formed of porous nanofibers with interconnected macropores due to the presence of the ice spheres. Nanobioactive glass was incorporated for the production of 3D macroporous, bioactive, therapeutic-ion-releasing scaffolds with potential applications in non-load-bearing bone tissue engineering. The bioactive characteristics of the fibers were assessed in vitro through immersion in simulated body fluid. The release of soluble silica ions was faster for the porous fibers within the first 24 h, with confirmation of hydroxyapatite on the fiber surface within 84 h.
    Original languageEnglish
    Pages (from-to)1442–1449
    JournalACS Biomaterials Science & Engineering
    Volume2
    Issue number9
    DOIs
    Publication statusPublished - 19 Jul 2016

    Fingerprint

    Dive into the research topics of 'Porous Bioactive Nanofibers via Cryogenic Solution Blow Spinning and Their Formation into 3D Macroporous Scaffolds'. Together they form a unique fingerprint.

    Cite this