Abstract
applications. Maximising the storage capacity is the primary goal for the design of future storage media.
Here we report the CH4 storage properties in a family of isostructural (3,24)-connected porous materials,
MFM-112a, MFM-115a and MFM-132a with different linker backbone functionalisation. Both MFM-112a
and MFM-115a show excellent CH4 uptakes of 236 and 256 cm3
(STP) cm–3 (v/v) at 80 bar and room
temperature, respectively. Significantly, MFM-115a displays an exceptionally high deliverable CH4 capacity
of 208 v/v between 5 and 80 bar at room temperature, making it among the best performing MOFs for
methane storage. We also synthesized the partially deuterated versions of the above materials and applied
solid-state 2H NMR spectroscopy to show that these three frameworks contain molecular rotors which
exhibit motion in fast, medium and slow regimes, respectively. In situ neutron powder diffraction studies on
the binding sites for CD4 within MFM-132a and MFM-115a reveal that the primary binding site is located
within the small pocket enclosed by the [(Cu2)3(isophthalate)3] window and three anthracene/phenyl panels.
The open Cu(II) sites are the secondary/tertiary adsorption sites in these structures. Thus, we obtained direct
experimental evidence showing that a tight cavity can generate a stronger binding affinity to gas molecules
than open metal sites. Solid-state 2H NMR and neutron diffraction studies reveal that it is the combination of
optimal molecular dynamics, pore geometry and size, and favourable binding sites that leads to the
exceptional and different methane uptakes in these materials.
Original language | English |
---|---|
Journal | American Chemical Society. Journal |
Early online date | 3 Aug 2017 |
DOIs | |
Publication status | Published - 27 Sept 2017 |
Fingerprint
Dive into the research topics of 'Porous Metal–Organic Polyhedral Frameworks with Optimal Molecular Dynamics and Pore Geometry for Methane Storage'. Together they form a unique fingerprint.Datasets
-
CCDC 1499828: Experimental Crystal Structure Determination
Yan, Y. (Contributor), Kolokolov, D. I. (Contributor), Da Silva, I. (Contributor), Stepanov, A. G. (Contributor), Blake, A. J. (Contributor), Dailly, A. (Contributor), Manuel, P. (Contributor), Tang, C. (Contributor), Yang, S. (Contributor) & Schroder, M. (Contributor), Cambridge Crystallographic Data Centre, 1 Jan 2017
DOI: 10.5517/ccdc.csd.cc1mbpk6, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.cc1mbpk6&sid=DataCite
Dataset
-
CCDC 1499829: Experimental Crystal Structure Determination
Yan, Y. (Contributor), Kolokolov, D. I. (Contributor), Da Silva, I. (Contributor), Stepanov, A. G. (Contributor), Blake, A. J. (Contributor), Dailly, A. (Contributor), Manuel, P. (Contributor), Tang, C. (Contributor), Yang, S. (Contributor) & Schroder, M. (Contributor), Cambridge Crystallographic Data Centre, 1 Jan 2017
DOI: 10.5517/ccdc.csd.cc1mbpl7, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.cc1mbpl7&sid=DataCite
Dataset
-
CCDC 1499831: Experimental Crystal Structure Determination
Yan, Y. (Contributor), Kolokolov, D. I. (Contributor), Da Silva, I. (Contributor), Stepanov, A. G. (Contributor), Blake, A. J. (Contributor), Dailly, A. (Contributor), Manuel, P. (Contributor), Tang, C. (Contributor), Yang, S. (Contributor) & Schroder, M. (Contributor), Cambridge Crystallographic Data Centre, 27 Apr 2017
DOI: 10.5517/ccdc.csd.cc1mbpn9, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.cc1mbpn9&sid=DataCite
Dataset