Abstract
Background:Despite substantial improvements in childhood cancer survival, drug resistance remains problematic for several paediatric tumour types. The urgent need to access novel agents to treat drug-resistant disease should be expedited by pre-clinical evaluation of paediatric tumour models during the early stages of drug development in adult cancer patients.Methods/results:The novel cytotoxic RH1 (2,5-diaziridinyl-3-hydroxymethyl-6-methyl-1,4-benzoquinone) is activated by the obligate two-electron reductase DT-diaphorase (DTD, widely expressed in adult tumour cells) to a potent DNA interstrand cross-linker. In acute viability assays against neuroblastoma, osteosarcoma, and Ewing′s sarcoma cell lines RH1 IC 50 values ranged from 1-200 nM and drug potency correlated both with DTD levels and drug-induced apoptosis. However, synergy between RH1 and cisplatin or doxorubicin was only seen in low DTD expressing cell lines. In clonogenic assays RH1 IC 50 values ranged from 1.5-7.5 nM and drug potency did not correlate with DTD level. In A673 Ewing's sarcoma and 791T osteosarcoma tumour xenografts in mice RH1 induced apoptosis 24 h after a single bolus injection (0.4 mg/kg) and daily dosing for 5 days delayed tumour growth relative to control.Conclusion:The demonstration of RH1 efficacy against paediatric tumour cell lines, which was performed concurrently with the adult Phase 1 Trial, suggests that this agent may have clinical usefulness in childhood cancer. © 2009 Cancer Research.
Original language | English |
---|---|
Pages (from-to) | 55-63 |
Number of pages | 8 |
Journal | British Journal of Cancer |
Volume | 101 |
Issue number | 1 |
DOIs | |
Publication status | Published - 7 Jul 2009 |
Keywords
- Childhood cancer
- Ewing's sarcoma
- Neuroblastoma
- Novel therapies
- Osteosarcoma
Research Beacons, Institutes and Platforms
- Manchester Cancer Research Centre